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ABSTRACT

Memristor-based neural networks provide an exceptional energy-efficient platform for artificial intelligence (Al), presenting
the possibility of self-powered operation when paired with energy harvesters. However, most memristor-based networks rely
on analog in-memory computing, necessitating a stable and precise power supply, which is incompatible with the inherently
unstable and unreliable energy harvesters. In this work, we fabricated a robust binarized neural network comprising 32,768
memristors, powered by a miniature wide-bandgap solar cell optimized for edge applications. Our circuit employs a resilient
digital near-memory computing approach, featuring complementarily programmed memristors and logic-in-sense-amplifier.
This design eliminates the need for compensation or calibration, operating effectively under diverse conditions. Under high
illumination, the circuit achieves inference performance comparable to that of a lab bench power supply. In low illumination
scenarios, it remains functional with slightly reduced accuracy, seamlessly transitioning to an approximate computing mode.
Through image classification neural network simulations, we demonstrate that misclassified images under low illumination
are primarily difficult-to-classify cases. Our approach lays the groundwork for self-powered Al and the creation of intelligent
sensors for various applications in health, safety, and environment monitoring.

Introduction

Artificial intelligence (AI) has found widespread use in various embedded applications such as patient monitoring, building,
and industrial safety!. To ensure security and minimize energy consumption due to communication, it is preferable to process
data at the edge in such systems?. However, deploying Al in extreme-edge environments poses a challenge due to its high
power consumption, often requiring Al to be relegated to the “cloud” or the “fog”>*. A promising solution to this problem is
the use of memristor-based systems, which can drastically reduce the energy consumption of AI>®, making it even conceivable
to create self-powered edge Al systems that do not require batteries and can instead harvest energy from the environment.
Additionally, memristors provide the advantage of being non-volatile memories, retaining stored information even if harvested
energy is depleted.

The most-energy efficient memristor-based Al circuits rely on analog-based in-memory computing: they exploit Ohm’s and
Kirchhoff’s laws to perform the fundamental operation of neural networks, multiply-and-accumulate (MAC)’~°. This concept is
challenging to realize in practice due to the high variability of memristors, the imperfections of analog CMOS circuits, and
voltage drop effects. To overcome these challenges, integrated memristor-based Al systems employ complex peripheral circuits,
which are tuned for a particular supply voltage'®-'°. This requirement for a stable supply voltage is in direct contrast with the
properties of miniature energy harvesters such as tiny solar cells or thermoelectric generators, which provide fluctuating voltage
and energy, creating a significant obstacle to realizing self-powered memristor-based AI'’.

In this work, we demonstrate a binarized neural network, fabricated in a hybrid CMOS/memristor process, and designed
with an alternative approach that is particularly resilient to unreliable power supply. We demonstrate this robustness by powering
our circuit with a miniature wide-bandgap solar cell, optimized for indoor applications. Remarkably, the circuit maintains



functionality even under low illumination conditions equivalent to 0.08 suns, experiencing only a modest decline in neural
network accuracy. When power availability is limited, our circuit seamlessly transitions from precise to approximate computing
as it begins to encounter errors while reading difficult-to-read, imperfectly-programmed memristors.

Our fully digital circuit, devoid of the need for any analog-to-digital conversion, incorporates four arrays of 8,192 memristors
each. It employs a logic-in-sense-amplifier two-transistor/two-memristor strategy for optimal robustness, introducing a practical
realization of the near-memory computing concept initially proposed in ref.!8 . The design is reminiscent of the smaller-scale
memristor-based Bayesian machine recently showcased in ref.?’, with the added novelty of logic-in-memory functionality.
This feature is achieved by executing multiplication within a robust precharge differential sense amplifier, a circuit initially
proposed in ref.?!. Accumulation is then performed using a straightforward digital circuit situated near-memory. Our system
also integrates on-chip a power management unit and a digital control unit, responsible for memristor programming and the
execution of fully pipelined inference operations.

We first introduce our integrated circuit and provide a comprehensive analysis of its electrical characteristics and performance
across a variety of supply voltages and frequencies. We then characterize the behavior of the circuit under solar cell power,
demonstrating its adaptability and resilience even when the power supply is significantly degraded due to low illumination. To
further showcase the robustness of the circuit, we present results from neural network simulations using the popular MNIST and
CIFAR-10 datasets. These results highlight the capability of the circuit to perform well even under extremely low illumination
conditions.

Results

Binarized neural network machine based on distributed memristor modules

In binarized neural networks, both synaptic weights and neuronal activations assume binary values (meaning +1 and —
These networks are particularly appropriate for the extreme edge, as they can be trained for image and signal processing tasks
with high accuracy, while requiring less resources than conventional real-valued neural networks?*23. In these simplified
networks, multiplication can be implemented by a one-bit exclusive NOR (XNOR) operation and accumulation by a population
count (popcount). The output neuron activations X, ; are, therefore, obtained by

1)22, 23 .

Xour,j = sign (popcount (XNOR (Wi, Xini)) — T), 1

using the synaptic weights Wj;, the input neuron activations X;,; and the output neuron threshold 7;. The quantity
popcount (XNOR (Wj;, X ;)) — T; is a signed integer, referred to as neuron preactivation throughout this paper.

We fabricated a binarized neural network hardware system (Fig.s 1a,b) employing hafnium-oxide memristors integrated
into the back end of a CMOS line to compute equation 1. The memristors replace vias between metal layers four and five
(Fig. 1c) and are used to program the synaptic weights and neuron thresholds in a non-volatile manner. The system comprises
four memristor arrays, each containing 8,192 memristors. These arrays can be used in two distinct configurations: one with
two neural network layers featuring 116 inputs and 64 outputs, or an alternative single-layer configuration that has 116 inputs
and 128 outputs. Additionally, we fabricated a smaller die that includes a single 8,192-memristor module with peripheral
circuits that provide more flexibility to access memristors. Our circuits use a low-power 130-nanometer process node, which
is interesting for extreme-edge applications, as it is cost-effective, offers well-balanced analog and digital performance, and
supports a wide range of voltages. Due to the partially academic nature of our process, only five layers of metals are available.

Our design choices aim to ensure the most reliable operation under unreliable power supply and follow the differential
strategy proposed in ref.!”. To achieve this, we use two memristors per synaptic weight, programmed in a complementary
fashion, with one in a low resistance state and the other in a high resistance state (see Fig. 1d). We also employ a dedicated
logic-in-memory precharge sense amplifier’! to perform the multiplication, which simultaneously reads the state of the two
memristors representing the weight and performs an XNOR with its X input (Fig. 1f). This differential approach makes our
circuit highly resilient. It minimizes the effects of memristor variability by ensuring that the sense amplifier functions as long
as the memristor in the low resistance state has a lower resistance than the memristor in the high resistance state, even if they
deviate significantly from their nominal values. Furthermore, fluctuations in the power supply voltage affect both branches of
the sense amplifier symmetrically. This robustness eliminates the need for compensation and calibration circuits, unlike in other
analog in-memory computing implementations that require a finely controlled supply voltage.

Our system computes the values of all output neurons in parallel. We provide a detailed description of the pipelined
operation of the neural network in Supplementary Note 3, and summarize the main principle here. The neuron thresholds, which
are stored in dedicated rows of the memristor arrays, are read simultaneously and transferred to neuron registers located near
the memristor arrays. Then, input neurons are presented sequentially to the memristor array. The accumulation operation of the
neural network is performed by integer digital population count circuits that take as input the outputs of the XNOR-augmented
sense amplifiers and decrement the neuron registers. These circuits, which are replicated for each output neuron, are located
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Figure 1. Overview of the fabricated memristor-based binarized neural network. a Optical microscopy image of the
fabricated die, showing four memory modules and their associated digital circuitry and power management unit. b Detail on
one of the memory modules. ¢ Cross-sectional scanning electron micrograph of a hybrid CMOS/memristor circuit, showing a
memristor between metal levels four and five. d Schematic of a memory module. For each operation mode, biasing conditions
for WL, BL, and SL are given with respect to the power domain (VDDC, VDDR) and VDD. e Schematic of the level shifter,
used in d for shifting digital voltage input to medium voltages needed during programming operations or nominal voltage
during reading operations of the memristors. f Schematic of the differential pre-charge sense amplifier PCSA, used to read the
binary memristor states, with embedded XNOR function, to compose a XPCSA: it computes an XNOR operation between
input activation X and weight (memristor value) during bit-cell sensing.
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physically near the memristor arrays. This near-memory computing principle saves energy, as only the binarized activations
of the output neurons, obtained by taking the sign bit of the threshold register at the end of the inference process, need to be
transmitted away from the memories.

As the synaptic weights are stored in non-volatile memory, the system can be turned off and on at any time, cutting power
consumption completely, and can immediately perform a new inference or restart a failed one. The programming of the weights
needs to be carried out prior to inference, and a forming operation must be performed on each memristor before its first
programming operation. A challenge is that the forming operation requires voltages as high as 4.5 volts, whereas the nominal
voltage of our CMOS process is only 1.2 volts. To overcome this, we included level shifters in the periphery circuitry of the
memristor arrays (Fig. le), which can sustain high voltages. These circuits, similar to the ones used in ref.??, use thick-oxide
transistors to raise the voltage of the on-chip signals commanding the programming of memristors. The higher-than-nominal
voltages are provided by two power pads. Once the memristors have been programmed, these pads can be connected to the
digital low-voltage power supply VDD, as high voltages are no longer needed. The details of the memristor forming and
programming operation are provided in Supplementary Note 2. Additionally, we incorporated a power management unit and a
complete state machine into our fabricated circuit. These components, placed and routed all around the die, are detailed in
Supplementary Note 1.

Characterization of the fabricated distributed memory modules BNN machine
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Figure 2. Measurements of the memristor-based binarized neural network, employing a lab-bench power supply.

a Sample measurement of the output of the integrated circuit, compared with a delay-less register-transfer level (RTL)
simulation. b Photograph of the printed circuit board used for the experiments. ¢ Measurement of the energy consumption to
perform a whole-chip inference, for various operating frequencies and supply voltages. d Pie chart comparing the different
sources of energy consumption in the system, obtained using simulations (see Methods).

Our fabricated system is functional across a wide range of supply voltages and operating frequencies, without the need for
calibration. As shown in Fig. 2a, the measured output of the system, obtained using the setup depicted in Fig. 2b, matches
the register-transfer-level simulation of our design (see Methods). This first experiment was conducted using the maximum
supported supply voltage of our process (1.2 volts) and a clock frequency of 66 MHz. The energy consumption of the system
can be reduced by decreasing the supply voltage, as seen in Fig. 2c. This graph displays the measured energy consumption
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across various supply voltages and frequencies where the system remained functional. The x-axis represents the square of the
supply voltage to highlight its direct proportionality to energy consumption: all circuits on-chip, including the sense amplifiers,
and with the exception of the power management circuits, function solely with capacitive loads. Notably, energy consumption
is largely independent of operation frequency at a given supply voltage. This result, typical for CMOS digital circuits, suggests
an absence of short-circuit currents in our design. Supply voltages lower than one volt do not support 66 MHz operation and
require slower clock speeds. The lowest measured energy consumption of 45 nJ was achieved at a supply voltage of 0.7 volts
(close to the threshold voltage of the transistors in the low-leakage process that we are using) and a clock frequency of 10 MHz.

Fig. 2d details the various sources of energy consumption in our circuit, as determined through simulations based on
the process design kit of our technology. (It is not possible to separate the consumption of the different on-chip functions
experimentally.) As the Figure illustrates, a significant portion of the energy is consumed by the on-chip digital control
circuitry. In scaled-up systems, this proportion is expected to decrease considerably as the control circuitry would remain
largely unchanged. Clock distribution represents only 5.2% of the energy, which is lower than typical digital circuits. This is
due to the high proportion of circuit area taken up by memristor arrays, which do not require clock distribution. Neuron registers
consume a substantial 16.0% of the energy, owing to their constant activity due to our design decision of not clock-gating
them. This design choice simplified timing constraints in the circuit, ensuring its experimental functionality. However, a fully
optimized design would be clock-gated, substantially reducing energy usage for the registers (see Discussion). The actual
multiply-and-accumulate operations, including memristor read with XNOR logic-in-memory and population count, consume a
modest 6.5% of the energy.

We now present a comprehensive characterization of the accuracy of our fabricated system. Initially, we programmed a
memristor array with synaptic weights and neuron thresholds and tested it with neuron inputs, carefully selected to span the
entire spectrum of potential output preactivation values (see Methods). Fig. 3a presents the measured accuracy (percentage
of correct output neurons) across varying supply voltages and operational frequencies in a schmoo plot. With this setup, we
observe no errors when the supply voltage is at least one volt. At 0.9 volts, occasional errors occur at 66 MHz operation,
and below this voltage, error rates up to 2% can manifest at any frequency. We attribute these residual errors to the sense
amplifiers, likely due to memristor variability and instability, which cause their resistance to deviate from the target nominal
value. Conventional digital circuits incorporating memristors employ strong multiple-error correction codes to compensate for
these issues2®. By contrast, our sense amplifier, owing to its differential nature, can still determine the correct weight even
if one memristor exhibits an improper resistance, as long as the memristor programmed in low resistance maintains a lower
resistance than the memristor programmed in high resistance. At lower supply voltages, this task becomes more challenging,
resulting in the observed residual bit errors.

As neuron errors arise from weight errors, they are only observed when the population count and threshold values of a
neuron are comparable. We found that errors were absent experimentally when the difference between the population count
and threshold (or neuron preactivation A) exceeded five. Figs. 3c,d, based on extensive experiments (see Methods), depict the
error rates for different supply voltages as a function of the neuron preactivation, when the system operates at 33 MHz and
66 MHz. At a supply voltage of 1.2 volts, errors only occur when the preactivation is -1, 0, or 1. At a supply voltage of 0.9 volts,
errors are observed for preactivation magnitudes up to five. To illustrate how errors occur, Fig. 3 shows measurements of 64
output neurons with varying preactivations values, ranging from -5 to +5, taken at 33 and 66 MHz, with a supply voltage of
0.9 volts. At this voltage, more errors are observed at 66 MHz than at 33 MHz. Almost all errors detected at 33 MHz continue
to exist at 66 MHz. This observation implies that residual errors are likely due to specific weakly-programmed memristors (i.e.,
complementary memristors programmed with similar resistance), rather than random thermal noise.
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Figure 3. Accuracy of the memristor-based binarized neural network. a Measured schmoo plot, presenting mean
accuracy of the output neuron activations, for different operation frequency and supply voltage. They were obtained using
patterns of weights and inputs chosen to cover all possible neuron preactivations (see Methods). NF means non-functional.
b Measurements of 64 neurons with preactivations -5, -1, 0, 1, and 5, at 33 and 66 MHz with a power supply of 0.9 volts.
Errors are marked in red. ¢,d Mean accuracy of the output neuron activations, as a function of neuron preactivation A and
supply voltage, measured at (¢) 33 and (d) 66 MHz (see Methods).
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Powering the system with harvested energy

To validate the suitability of our circuit for energy harvesting applications, we connected it to a miniature AlGaAs/GalnP
heterostructure solar cell (see Fig. 4a and Methods). Fig. 4b displays a photograph of this cell, along with its current-voltage
characteristics measured under standardized one-sun AM1.5 illumination (see Methods). This type of solar cell, fabricated
following the procedure of ref.?’ (see Methods), with a 1.73 eV bandgap, performs better than conventional silicon-based cells
under low-illumination conditions, making it particularly suitable for extreme edge applications. Additionally, due to the wide
bandgap, the open-circuit voltage provided by our solar cell (1.23 volts under high illumination) aligns with the nominal supply
voltage of our CMOS technology (1.2 volts), unlike silicon solar cells, whose maximum voltage is only 0.7 volts.

While energy harvesters are typically connected to electronic circuits through intricate voltage conversion and regulation
circuits, we demonstrate the resilience of our binarized neural network by directly connecting the power supply pads of our
circuit to the solar cell, without any interface circuitry. In those experiments, the solar cell is illuminated by a halogen lamp
(Fig. 4d). Fig. 4c presents the current voltage of the solar cell with this setup for various illuminations, expressed as “equivalent
solar powers” based on the short-circuit current of the solar cell (see Methods). Fig. 4e shows the measured accuracy of our
system, plotted as a function of neuron preactivation, similarly to Fig. 3d.

Under an equivalent solar power of 8 suns, the circuit performs almost equivalently to when powered by a 1.2 volts lab bench
supply. When illumination decreases, even under a very low equivalent solar power of 0.08 suns where the characteristics of the
solar cell is strongly degraded, the circuit remains functional. However, its error rate increases, especially for low-magnitude
preactivation values. The circuit naturally transitions to an approximative computing regime: neurons will large-magnitude
preactivations are correctly computed, but those with low-magnitude preactivations may exhibit errors.

Equivalent Solar Power MNIST Accuracy CIFAR-10 Accuracy

Baseline 97.2% 86.6%

8 suns 97.1% 83.6%
0.8 suns 96.9% 78.2%
0.36 suns 96.9% 78.3%
0.08 suns 96.5% 73.4%

Table 1. Simulated accuracy of solar-cell power a fully-connected (MNIST task) and a convolutional (CIFAR-10 task)
binarized neural network under various illuminations. The software baseline assumes no bit error (see Methods).

We now evaluate the performance of our circuit on neural networks. Our system functions with 128 x 64 memristor arrays;
however, in practice, neural networks can have various structures. To map neural networks to our hardware, we employ a
technique that subdivides neural network layers into several binarized arrays and then obtains the value of output neurons
through majority votes of the binary output of each array (see Figs. 5a,b). This method, which we describe in more detail in
Supplementary Note 4, is highly efficient in terms of hardware usage and causes only moderate accuracy degradation compared
to software-based neural networks on the two tasks considered here: Modified National Institute of Standards and Technology
(MNIST) handwritten digit recognition and CIFAR-10 image recognition.

To evaluate the classification accuracy of our hardware, we incorporated the error rates measured experimentally as a
function of preactivation value and illumination (Fig. 4d) into neural network simulations (see Methods). Table 1 lists the
obtained accuracy on a fully-connected neural network trained on MNIST and a convolutional neural network trained on
CIFAR-10 (see Methods). Remarkably, the MNIST accuracy is hardly affected by the bit errors in the circuit: even under
very low illumination equivalent to 0.08 suns, the MNIST accuracy drops by only 0.7 percentage points. Conversely, bit
errors significantly reduce the accuracy of the more demanding CIFAR-10 task. Under 0.08 suns, the accuracy drops from the
software baseline of 86.6% to 73.4%. The difference with the MNIST arises because more neurons tend to have low-magnitude
preactivation when solving CIFAR-10, as the differences between classes are more subtle.

To further understand the impact of low illumination on neural network performance, we plotted the t-distributed stochastic
neighbor embedding® (t-SNE) representation of the MNIST test dataset in Fig. 5b. This technique represents each image
as a point in a two-dimensional space, where similar images cluster together and dissimilar ones reside at a distance. In the
left image, we marked in black the images that were correctly classified by a neural network under illumination equivalent
to 8 suns, but incorrectly under 0.8 suns. Interestingly, these images tend to be on the edges of the clusters corresponding
to the different digit classes, or even outliers that do not belong in a cluster. This suggests that the images that the network
starts misclassifying under 0.8 suns tend to be subtle or atypical cases. The right image shows that this effect intensifies under
illumination equivalent to 0.08 suns, with a few images inside clusters also being misclassified. Fig. Sc presents the same
analysis for the CIFAR-10 dataset. The trend of incorrectly classified images under low illumination tending to be edge or
atypical cases persists, albeit less pronounced than with MNIST.
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Figure 4. Measurements of the binarized neural network powered by a miniature solar cell. a Schematic view of the
AlGaAs/GalnP heterostructure solar cell. b Photograph of the solar cell, and its measured current-voltage characteristics under
one-sun AM1.5 illumination provided by a standardized solar simulator (see Methods). ¢ Current-voltage characteristics of the
solar cell for various illuminations provided by the halogen lamp (see Methods). d Photograph of the experimental setup where
the fabricated binarized neural network is powered by the solar cell illuminated by the halogen lamp. e Mean measured
accuracy of the output neuron activations, with the binarized neural network powered by the solar cell, as a function of neuron
preactivation A and solar cell illumination.
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Discussion

Our circuit exhibits an original behavior when solving tasks of varying difficulty levels. For simpler tasks such as MNIST, the
circuit maintains accuracy even when energy is scarce. When addressing more complex tasks, the circuit becomes less accurate
as energy availability decreases, but without failing completely. This self-adaptive approximate computing feature has several
roots and can be understood by the circuit’s memory read operations. They are highly robust due to their differential nature:
fluctuations of the power supply affect both branches of the sense amplifier equally. Still, when power voltage fluctuates or
becomes low, some memory reads fail. Nevertheless, binarized neural networks are highly robust to weight errors, which in
many cases do not change neuron activation?”-3°. Even in the worst case, weight errors cause some images to be misclassified,
but these are typically atypical or edge cases. Therefore, when the power supply degrades, the Al naturally becomes less
capable of recognizing harder-to-classify images.

In this context of low-quality power supply, memristors offer distinct advantages over conventional static RAMs. While
static RAMs lose stored information upon power loss, memristors retain data. Furthermore, when the supply voltage becomes
low, static RAMs are prone to read disturb, meaning that a read operation can change the bit stored in a memory cell. In
contrast, memristors exhibit near-immunity to read disturb effects, especially when read by precharge sense amplifiers?” (we
observed no read disturb in our experiments), and are non-volatile (ten-years retention has been demonstrated in hafnium-oxide
memristors3).

After eliminating the energy used by the digital control circuitry (finite state machine), our circuit has an energy efficiency of
2.9 tera-operations per second and per watt (TOPS/W) under optimal conditions (10 MHz frequency, supply voltage of 0.7 volts).
By further subtracting the energy consumption of clock distribution and neuron registers that can be eliminated through clock
gating, and simultaneously optimizing the read operation (see Methods), energy efficiency increases to 22.5 TOPS/W. Due to
the digital nature of our circuit, this number would scale favorably if a more current CMOS process was used. For example,
employing the physical design kit of a fully-depleted silicon-on-insulator 28-nanometer CMOS process, we found that the
energy efficiency of a clock-gated design would reach 397 TOPS/W (see Methods). Supplementary Note 5 compares these
numbers and other properties of our digital system with fabricated emerging memory-based analog in-memory computing
circuits. The most noteworthy comparison is with a recent study that presents an analog magnetoresistive memory (MRAM)
based 64x64 binarized neural network fabricated in a 28-nanometer process'#, which has a measured energy efficiency of
405 TOPS/W, which surpasses our projection slighly. However, this energy efficiency comes with the need for complex
compensation and calibration circuits, matched to a stable power supply, which is not suitable with the unreliable power supply
delivered by energy harvesters.

Our circuit can function with power supplies as low as 0.7 volts, enabling us to power it with a wide-bandgap solar cell
optimized for indoor applications, with an area of only a few square millimeters, even under low illumination equivalent to
0.08 suns. Such lightweight, ultrathin solar cells can also be transferred into a fully-integrated, self-powered device*>33. Supply
voltages lower than 0.7 volts result in significant inaccuracies in memristor readings due to the high threshold voltages of
the thick-oxide transistors in our process. Employing a process with a lower threshold voltage thick-oxide transistor option
could enable operation at lower supply voltages, broadening compatibility with various solar and non-solar energy harvesters.
Some very low-voltage harvesters (e.g., thermoelectrics) may still require the voltage to be raised, which can be accomplished
on-chip using switched capacitor circuits like Dickson charge pumps®*. Self-powered Al at the edge, therefore, offers multiple
opportunities to enable the development of intelligent sensors for health, safety, and environmental monitoring.
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Methods

Fabrication of the demonstrator

The MOS part of our demonstrator was fabricated using a low-power 130-nanometer foundry process up to the fourth layer
of metal. Memristors, composed of a TiN/HfO,/Ti/TiN stack, were then fabricated on top of exposed vias. The active
10-nanometer thick HfO, layer was deposited by atomic layer deposition. The Ti layer is also 10-nanometer thick, and the
memristor structure has a diameter of 300 nanometers. A fifth layer of metal was deposited on top of the memristors. 25
input/output pads are aligned to be compatible with a custom probe card. A packaged version of the demonstrator was also
assembled in a J-Leaded Ceramic Chip Carrier with 52 leads.

Design of the demonstrator

The memristor-based Binarized Neural Network is a hybrid CMOS/nanotechnology integrated circuit with distributed memory
modules within the logic. The design of the memory module includes the array and peripheral circuits, such as the XNOR-
augmented precharge sense amplifiers (Fig. 1b) and the level shifter circuits (Fig. 1¢). The memory modules were designed
using a full-custom flow under the Cadence Virtuoso electronic design automation (EDA) tool and were simulated using the
Siemens Eldo simulator. Verification steps, i.e., layout versus schematic check and design rule check, were performed using
Calibre tools.

The level shifter circuit (Fig. 1e) was designed with thick-oxide MOS transistors supporting up to five volts. To isolate
the precharge current sense amplifier during the forming or programming operations, the four XNOR MOS transistors (the
ones connected to the input X in Fig. 1f) were designed with thick gate oxide. The sense amplifier itself was constructed using
thin gate oxide transistors. The memory modules architecture also includes four dedicated power rings: one for VDDR, one
for VDDC, one for VDD, and one for the ground (GND). An abstract view of the memory modules was generated using the
Cadence abstract generator. The power switch unit, which has to sustain up to 4.5 volts during the forming operation, was also
designed using thick-oxide transistors, following the same full-custom flow as the memory modules. A Liberty Timing Files
(.lib) related to the abstract view of the full custom blocks was handwritten and a Synopsys database file (.sdb) was generated
using the Synopys Library Compiler.

The overall machine core follows a digital on-top flow, where all digital blocks (e.g., controller logic, population count
decounter, neuron registers) are described using the VHSIC Hardware Description Language (VHDL), including the full
custom blocks entity, synthesized using the Synopsys Design Compiler, and finally placed and routed, including the full-custom
abstract view, using the Cadence Encounter RTL-to-GDSII tool, following a semi-automated flow developed by the foundry. All
digital circuits use thin-oxide high-threshold transistors and are biased to VDD. Logical verification of the core, including the
memory modules, described with an equivalent handmade VHDL behavioral description, and the power switch, described with
an equivalent handmade VerilogA description, were performed using Siemens Questa mixed-signal simulator. The memory
modules equivalent VHDL description and the power switch VerilogA equivalent descriptions were first assessed against their
electrical schematic counterparts, simulated with Siemens Eldo electrical simulator. The connection of the machine layout to
the 25 input/output pads was accomplished manually in a full-custom fashion.

Supplementary Note 1 describes the digital control circuitry and the power management unit with more technical details.
Supplementary Note 2 details the methodology used by our circuit for forming and programming the memristors. Supplementary
Note 3 lists the steps of the pipelined inference operation of the circuit.
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Fabrication of the solar cell

The fabrication of solar cells in this study was carried out according to the procedures described in ref.?’. The semiconductor
stack was grown on a GaAs substrate using molecular beam epitaxy and consisted of the following sequence of layers:
p-GaAs:Be (300 nm), p-Alys;GaAs:Be (50 nm), p-AlGaAs:Be with a linear gradient from 51% to 25% Al (100 nm), p-
Aly5GaAs:Be (1900 nm), n-Alp 3GaAs:Si (100 nm), n-InGaP:Si (50 nm), n-AlInP:Si (20 nm), and n-GaAs:Si (300 nm) (see
Fig. 4a).

The front metal grid was defined using standard photolithography techniques, followed by metal evaporation (NiGeAu) and
lift-off processes. Wet chemical etching was used to separate the mesa structures of the different cells, and to etch the top 300
nm-thick GaAs contact layer outside the front grid area. The back contact (TiAu) is deposited on the backside of the substrate.
No anti-reflection coating was added. The size of the solar cells is 5 mm x5 mm.

Measurements of the system with lab-bench power supply

The measurements of our system were conducted on the packaged version. The binarized neural network integrated circuit
is mounted on a dedicated printed circuit board (PCB) featuring level shifters and SubMiniature A (SMA) connectors (see
Fig. 2b). The PCB connects the different input and output signals of the packaged chip to an STM32F746ZGT6 microcontroller
unit, a Tektronix AWG2005 arbitrary waveform generator, and a Tektronix DPO 3014 oscilloscope. The voltage for the level
shifters of the PCB is supplied by an Agilent E3631A power supply. The microcontroller unit is connected to a computer using
a serial connection, while lab-bench equipments are connected to the computer using a National Instruments GPIB connection.
The whole setup is controlled using python within a single Jupyter notebook.

Supplementary Note 2 details the memristor forming and programming operations, and we summarize them here. Before
starting any measurement, all the memristors are formed, sequentially, under the control of the on-chip digital control block
(Supplementary Note 1). During this operation, the VDDC supply voltage is set to 4.5 volts, VDDR to 2.7 volts, and VDD to
1.2 volts, during ten microseconds. After this initial forming step, the memristor array is programmed with the desired pattern
(synaptic weights and neuron thresholds). The programmed data are transmitted to the microcontroller unit, which sends them
to the binarized neural network integrated circuit row-by-row. To program a memory cell to HRS, the digital control block
connects VDDC to 2.7 volts and VDDR to 4.5 volts, with VDD fixed at 1.2 volts. To program a memory cell to LRS, VDDC,
and VDDR are both connected to 2.7 volts, and VDD is connected to 1.2 volts. The two memristors of each bit cell are always
programmed in a complementary fashion (i.e., either LRS/HRS or HRS/LRS). The digital circuitry controls the programming
operations based on the weight value for each memristor, and applies the programming pulses during six microseconds.

To perform inference (see Supplementary Note 3), input neuron activations are sent through the microcontroller unit for
each row, and the output of the integrated circuit is captured by the microcontroller unit and stored in a comma-separated values
(CSV) file. To obtain the schmoo plots shown in Fig. 3, the power supply voltage VDD was varied from 1.2 to 0.7 volts, for all
considered operation frequencies. The saved outputs of the integrated circuit were compared to the expected outputs to extract
the system’s accuracy.

To measure the power consumption of the circuit (Fig. 2¢), the VDD power supply of the test chip is connected to a Keithley
428 current amplifier. The output of the Keithley 428 is connected to the oscilloscope to obtain the current during inference.

Measurements of the system powered by the solar cell

We first characterized the current-voltage characteristics of the solar cell (Fig. 4b), using a certified solar simulator providing
a one-sun (100 mW/cm?) AMI.5 illumination. To power our binarized neural network by the solar cell, we switched to a
more accessible variable-illumination halogen lamp (Fig. 4c), whose spectrum does not match AM1.5 solar light. To obtain an
equivalent solar power, we measured the current-voltage characteristics of the solar cell under this lamp (Fig. 4b) using the
source measure unit mode of a Keysight B1530A unit. We calculate the equivalent solar power by dividing the short circuit
current by the one under one-sun AM1.5 illumination.

We then directly connected our binarized neural network to the solar cell and conducted inference measurements using the
same methodology as with the lab-bench power supply. To accomplish this, we connected all three power pads of the circuit
(VDD, VH, VM, see Supplementary Note 1) to the solar cell, as high supply voltages are not needed to perform inference. To
obtain the schmoo of Fig. 4e, we used the same methodology as for Fig. 3, but by varying the halogen light illumination instead
of the bench power supply voltage.

Energy consumption estimates
Energy measurements of the system (shown in Fig. 2c) cannot differentiate the consumption of the different elements of the
circuit, as they all share the same power supply. To overcome this limitation (as illustrated in Fig. 2s), we relied on computer
simulations of our circuit using commercial integrated circuit design tools.

We obtained energy estimates during the inference phase, after the memristors were formed and the memory programmed.
The consumption of the memristor arrays was determined using circuit simulations (based on the Siemens Eldo simulator),
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which also accounted for parasitic capacitance extracted from the memristor array layout. For the remainder of the system, we
analyzed it using the Cadence Voltus power integrity solution framework on the placed-and-routed design, incorporating all
parasitics. We utilized a value change dump (VCD) file obtained from a test bench simulation to ensure a realistic situation.

The memristor array blocks are full-custom and, therefore, not included in the standard library of the foundry. This raised a
concern regarding the continuous flow of values before and after the memristor array when performing the energy analysis. To
address this, we wrote a new liberty (.lib) file, specifically for use in the energy analysis, based on the actual output values
during simulation to ensure that the flow before and after the memory was respected during the inference phase.

In our fabricated circuit, the neuron registers are enabled when an XNOR-augmented sense operation is performed. We
chose not to clock-gate these registers to avoid any timing risk in our test chip; however, this strategy can be employed to
reduce the energy consumption of a final design. Therefore, we also designed a clock-gated version of our circuit and estimated
its energy consumption using the same flow as for the fabricated version. This clock-gated version also uses an optimized read
process requiring fewer clock cycles. We finally estimated the energy consumption of a scaled-down version of the design in a
commercial 28-nanometer fully-depleted silicon-on-insulator CMOS design kit. For this analysis, the memristor array was
entirely redesigned in the 28-nm design kit. For the digital part, we use a scaling factor relating the typical energy consumption
of equivalent circuits in the two commercial technology nodes.

Neural-network level investigations

For the neural network simulations presented in Fig. 2, we used a fully connected architecture for the MNIST handwritten
digit recognition task, and a convolutional neural network architecture for the CIFAR-10 image classification task. Except
for the input to the first layer, the activations and weights of the network were binarized, following the binarized neural
network implementation®®. The fully connected (FC) network had two hidden layers with 1,102 and 64 neurons, whereas
the convolutional architecture was based on the VGG-16 network, and it consisted of 3x3 kernels for convolutions (Conv),
batch normalizations (BN), and nxn for MaxPool (MPn) and reads: [Conv 198, BN, Conv 198, MP 2, BN, Conv 354, BN,
Conv 354, MP2, BN, Conv 738, BN, Conv 406, MP3, FC(1102-1102-10)]. The number of hidden layer units and convolutional
filters were chosen in accordance with the dedicated mapping technique described in Supplementary Note 4, such that the total
number of blocks is always odd when a block size of 58 is used.

We trained the networks without errors and with the mapping technique implemented. The input neurons of the first layer
and the output neurons of the final layer are non-binary, so we did not include circuit-induced errors in these layers, as they
require different circuits. The convolutional network was trained for 500 epochs with the Adam optimizer with weight decay
and a cosine annealing learning rate scheduler. The fully-connected network was trained with the same optimizer for 200
epochs with a step learning rate scheduler®. Only after the training was completed were the errors introduced during the
inference step, using a dedicated Pytorch code reproducing the error rate measured experimentally (Fig. 4e). The error rate of
the circuit for a certain level of illumination and a certain preactivation A was taken as the probability of having an error in the
neuronal output. The PyTorch deep learning framework was used to perform all the neural network simulations.
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