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ABSTRACT

Memristor-based neural networks provide an exceptional energy-efficient platform for artificial intelligence (AI), presenting

the possibility of self-powered operation when paired with energy harvesters. However, most memristor-based networks rely

on analog in-memory computing, necessitating a stable and precise power supply, which is incompatible with the inherently

unstable and unreliable energy harvesters. In this work, we fabricated a robust binarized neural network comprising 32,768

memristors, powered by a miniature wide-bandgap solar cell optimized for edge applications. Our circuit employs a resilient

digital near-memory computing approach, featuring complementarily programmed memristors and logic-in-sense-amplifier.

This design eliminates the need for compensation or calibration, operating effectively under diverse conditions. Under high

illumination, the circuit achieves inference performance comparable to that of a lab bench power supply. In low illumination

scenarios, it remains functional with slightly reduced accuracy, seamlessly transitioning to an approximate computing mode.

Through image classification neural network simulations, we demonstrate that misclassified images under low illumination

are primarily difficult-to-classify cases. Our approach lays the groundwork for self-powered AI and the creation of intelligent

sensors for various applications in health, safety, and environment monitoring.

Introduction

Artificial intelligence (AI) has found widespread use in various embedded applications such as patient monitoring, building,

and industrial safety1. To ensure security and minimize energy consumption due to communication, it is preferable to process

data at the edge in such systems2. However, deploying AI in extreme-edge environments poses a challenge due to its high

power consumption, often requiring AI to be relegated to the “cloud” or the “fog”3, 4. A promising solution to this problem is

the use of memristor-based systems, which can drastically reduce the energy consumption of AI5, 6, making it even conceivable

to create self-powered edge AI systems that do not require batteries and can instead harvest energy from the environment.

Additionally, memristors provide the advantage of being non-volatile memories, retaining stored information even if harvested

energy is depleted.

The most-energy efficient memristor-based AI circuits rely on analog-based in-memory computing: they exploit Ohm’s and

Kirchhoff’s laws to perform the fundamental operation of neural networks, multiply-and-accumulate (MAC)7–9. This concept is

challenging to realize in practice due to the high variability of memristors, the imperfections of analog CMOS circuits, and

voltage drop effects. To overcome these challenges, integrated memristor-based AI systems employ complex peripheral circuits,

which are tuned for a particular supply voltage10–16. This requirement for a stable supply voltage is in direct contrast with the

properties of miniature energy harvesters such as tiny solar cells or thermoelectric generators, which provide fluctuating voltage

and energy, creating a significant obstacle to realizing self-powered memristor-based AI17.

In this work, we demonstrate a binarized neural network, fabricated in a hybrid CMOS/memristor process, and designed

with an alternative approach that is particularly resilient to unreliable power supply. We demonstrate this robustness by powering

our circuit with a miniature wide-bandgap solar cell, optimized for indoor applications. Remarkably, the circuit maintains
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functionality even under low illumination conditions equivalent to 0.08 suns, experiencing only a modest decline in neural

network accuracy. When power availability is limited, our circuit seamlessly transitions from precise to approximate computing

as it begins to encounter errors while reading difficult-to-read, imperfectly-programmed memristors.

Our fully digital circuit, devoid of the need for any analog-to-digital conversion, incorporates four arrays of 8,192 memristors

each. It employs a logic-in-sense-amplifier two-transistor/two-memristor strategy for optimal robustness, introducing a practical

realization of the near-memory computing concept initially proposed in ref.18, 19. The design is reminiscent of the smaller-scale

memristor-based Bayesian machine recently showcased in ref.20, with the added novelty of logic-in-memory functionality.

This feature is achieved by executing multiplication within a robust precharge differential sense amplifier, a circuit initially

proposed in ref.21. Accumulation is then performed using a straightforward digital circuit situated near-memory. Our system

also integrates on-chip a power management unit and a digital control unit, responsible for memristor programming and the

execution of fully pipelined inference operations.

We first introduce our integrated circuit and provide a comprehensive analysis of its electrical characteristics and performance

across a variety of supply voltages and frequencies. We then characterize the behavior of the circuit under solar cell power,

demonstrating its adaptability and resilience even when the power supply is significantly degraded due to low illumination. To

further showcase the robustness of the circuit, we present results from neural network simulations using the popular MNIST and

CIFAR-10 datasets. These results highlight the capability of the circuit to perform well even under extremely low illumination

conditions.

Results

Binarized neural network machine based on distributed memristor modules

In binarized neural networks, both synaptic weights and neuronal activations assume binary values (meaning +1 and −1)22, 23.

These networks are particularly appropriate for the extreme edge, as they can be trained for image and signal processing tasks

with high accuracy, while requiring less resources than conventional real-valued neural networks24, 25. In these simplified

networks, multiplication can be implemented by a one-bit exclusive NOR (XNOR) operation and accumulation by a population

count (popcount). The output neuron activations Xout, j are, therefore, obtained by

Xout, j = sign(popcount(XNOR(Wji,Xin,i))−Tj) , (1)

using the synaptic weights Wji, the input neuron activations Xin,i and the output neuron threshold Tj. The quantity

popcount(XNOR(Wji,Xin,i))−Tj is a signed integer, referred to as neuron preactivation throughout this paper.

We fabricated a binarized neural network hardware system (Fig.s 1a,b) employing hafnium-oxide memristors integrated

into the back end of a CMOS line to compute equation 1. The memristors replace vias between metal layers four and five

(Fig. 1c) and are used to program the synaptic weights and neuron thresholds in a non-volatile manner. The system comprises

four memristor arrays, each containing 8,192 memristors. These arrays can be used in two distinct configurations: one with

two neural network layers featuring 116 inputs and 64 outputs, or an alternative single-layer configuration that has 116 inputs

and 128 outputs. Additionally, we fabricated a smaller die that includes a single 8,192-memristor module with peripheral

circuits that provide more flexibility to access memristors. Our circuits use a low-power 130-nanometer process node, which

is interesting for extreme-edge applications, as it is cost-effective, offers well-balanced analog and digital performance, and

supports a wide range of voltages. Due to the partially academic nature of our process, only five layers of metals are available.

Our design choices aim to ensure the most reliable operation under unreliable power supply and follow the differential

strategy proposed in ref.19. To achieve this, we use two memristors per synaptic weight, programmed in a complementary

fashion, with one in a low resistance state and the other in a high resistance state (see Fig. 1d). We also employ a dedicated

logic-in-memory precharge sense amplifier21 to perform the multiplication, which simultaneously reads the state of the two

memristors representing the weight and performs an XNOR with its X input (Fig. 1f). This differential approach makes our

circuit highly resilient. It minimizes the effects of memristor variability by ensuring that the sense amplifier functions as long

as the memristor in the low resistance state has a lower resistance than the memristor in the high resistance state, even if they

deviate significantly from their nominal values. Furthermore, fluctuations in the power supply voltage affect both branches of

the sense amplifier symmetrically. This robustness eliminates the need for compensation and calibration circuits, unlike in other

analog in-memory computing implementations that require a finely controlled supply voltage.

Our system computes the values of all output neurons in parallel. We provide a detailed description of the pipelined

operation of the neural network in Supplementary Note 3, and summarize the main principle here. The neuron thresholds, which

are stored in dedicated rows of the memristor arrays, are read simultaneously and transferred to neuron registers located near

the memristor arrays. Then, input neurons are presented sequentially to the memristor array. The accumulation operation of the

neural network is performed by integer digital population count circuits that take as input the outputs of the XNOR-augmented

sense amplifiers and decrement the neuron registers. These circuits, which are replicated for each output neuron, are located
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Figure 1. Overview of the fabricated memristor-based binarized neural network. a Optical microscopy image of the

fabricated die, showing four memory modules and their associated digital circuitry and power management unit. b Detail on

one of the memory modules. c Cross-sectional scanning electron micrograph of a hybrid CMOS/memristor circuit, showing a

memristor between metal levels four and five. d Schematic of a memory module. For each operation mode, biasing conditions

for WL, BL, and SL are given with respect to the power domain (VDDC, VDDR) and VDD. e Schematic of the level shifter,

used in d for shifting digital voltage input to medium voltages needed during programming operations or nominal voltage

during reading operations of the memristors. f Schematic of the differential pre-charge sense amplifier PCSA, used to read the

binary memristor states, with embedded XNOR function, to compose a XPCSA: it computes an XNOR operation between

input activation X and weight (memristor value) during bit-cell sensing.
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physically near the memristor arrays. This near-memory computing principle saves energy, as only the binarized activations

of the output neurons, obtained by taking the sign bit of the threshold register at the end of the inference process, need to be

transmitted away from the memories.

As the synaptic weights are stored in non-volatile memory, the system can be turned off and on at any time, cutting power

consumption completely, and can immediately perform a new inference or restart a failed one. The programming of the weights

needs to be carried out prior to inference, and a forming operation must be performed on each memristor before its first

programming operation. A challenge is that the forming operation requires voltages as high as 4.5 volts, whereas the nominal

voltage of our CMOS process is only 1.2 volts. To overcome this, we included level shifters in the periphery circuitry of the

memristor arrays (Fig. 1e), which can sustain high voltages. These circuits, similar to the ones used in ref.20, use thick-oxide

transistors to raise the voltage of the on-chip signals commanding the programming of memristors. The higher-than-nominal

voltages are provided by two power pads. Once the memristors have been programmed, these pads can be connected to the

digital low-voltage power supply VDD, as high voltages are no longer needed. The details of the memristor forming and

programming operation are provided in Supplementary Note 2. Additionally, we incorporated a power management unit and a

complete state machine into our fabricated circuit. These components, placed and routed all around the die, are detailed in

Supplementary Note 1.

Characterization of the fabricated distributed memory modules BNN machine
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Figure 2. Measurements of the memristor-based binarized neural network, employing a lab-bench power supply.

a Sample measurement of the output of the integrated circuit, compared with a delay-less register-transfer level (RTL)

simulation. b Photograph of the printed circuit board used for the experiments. c Measurement of the energy consumption to

perform a whole-chip inference, for various operating frequencies and supply voltages. d Pie chart comparing the different

sources of energy consumption in the system, obtained using simulations (see Methods).

Our fabricated system is functional across a wide range of supply voltages and operating frequencies, without the need for

calibration. As shown in Fig. 2a, the measured output of the system, obtained using the setup depicted in Fig. 2b, matches

the register-transfer-level simulation of our design (see Methods). This first experiment was conducted using the maximum

supported supply voltage of our process (1.2 volts) and a clock frequency of 66 MHz. The energy consumption of the system

can be reduced by decreasing the supply voltage, as seen in Fig. 2c. This graph displays the measured energy consumption
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across various supply voltages and frequencies where the system remained functional. The x-axis represents the square of the

supply voltage to highlight its direct proportionality to energy consumption: all circuits on-chip, including the sense amplifiers,

and with the exception of the power management circuits, function solely with capacitive loads. Notably, energy consumption

is largely independent of operation frequency at a given supply voltage. This result, typical for CMOS digital circuits, suggests

an absence of short-circuit currents in our design. Supply voltages lower than one volt do not support 66 MHz operation and

require slower clock speeds. The lowest measured energy consumption of 45 nJ was achieved at a supply voltage of 0.7 volts

(close to the threshold voltage of the transistors in the low-leakage process that we are using) and a clock frequency of 10 MHz.

Fig. 2d details the various sources of energy consumption in our circuit, as determined through simulations based on

the process design kit of our technology. (It is not possible to separate the consumption of the different on-chip functions

experimentally.) As the Figure illustrates, a significant portion of the energy is consumed by the on-chip digital control

circuitry. In scaled-up systems, this proportion is expected to decrease considerably as the control circuitry would remain

largely unchanged. Clock distribution represents only 5.2% of the energy, which is lower than typical digital circuits. This is

due to the high proportion of circuit area taken up by memristor arrays, which do not require clock distribution. Neuron registers

consume a substantial 16.0% of the energy, owing to their constant activity due to our design decision of not clock-gating

them. This design choice simplified timing constraints in the circuit, ensuring its experimental functionality. However, a fully

optimized design would be clock-gated, substantially reducing energy usage for the registers (see Discussion). The actual

multiply-and-accumulate operations, including memristor read with XNOR logic-in-memory and population count, consume a

modest 6.5% of the energy.

We now present a comprehensive characterization of the accuracy of our fabricated system. Initially, we programmed a

memristor array with synaptic weights and neuron thresholds and tested it with neuron inputs, carefully selected to span the

entire spectrum of potential output preactivation values (see Methods). Fig. 3a presents the measured accuracy (percentage

of correct output neurons) across varying supply voltages and operational frequencies in a schmoo plot. With this setup, we

observe no errors when the supply voltage is at least one volt. At 0.9 volts, occasional errors occur at 66 MHz operation,

and below this voltage, error rates up to 2% can manifest at any frequency. We attribute these residual errors to the sense

amplifiers, likely due to memristor variability and instability, which cause their resistance to deviate from the target nominal

value. Conventional digital circuits incorporating memristors employ strong multiple-error correction codes to compensate for

these issues26. By contrast, our sense amplifier, owing to its differential nature, can still determine the correct weight even

if one memristor exhibits an improper resistance, as long as the memristor programmed in low resistance maintains a lower

resistance than the memristor programmed in high resistance. At lower supply voltages, this task becomes more challenging,

resulting in the observed residual bit errors.

As neuron errors arise from weight errors, they are only observed when the population count and threshold values of a

neuron are comparable. We found that errors were absent experimentally when the difference between the population count

and threshold (or neuron preactivation ∆) exceeded five. Figs. 3c,d, based on extensive experiments (see Methods), depict the

error rates for different supply voltages as a function of the neuron preactivation, when the system operates at 33 MHz and

66 MHz. At a supply voltage of 1.2 volts, errors only occur when the preactivation is -1, 0, or 1. At a supply voltage of 0.9 volts,

errors are observed for preactivation magnitudes up to five. To illustrate how errors occur, Fig. 3 shows measurements of 64

output neurons with varying preactivations values, ranging from -5 to +5, taken at 33 and 66 MHz, with a supply voltage of

0.9 volts. At this voltage, more errors are observed at 66 MHz than at 33 MHz. Almost all errors detected at 33 MHz continue

to exist at 66 MHz. This observation implies that residual errors are likely due to specific weakly-programmed memristors (i.e.,

complementary memristors programmed with similar resistance), rather than random thermal noise.
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Figure 3. Accuracy of the memristor-based binarized neural network. a Measured schmoo plot, presenting mean

accuracy of the output neuron activations, for different operation frequency and supply voltage. They were obtained using

patterns of weights and inputs chosen to cover all possible neuron preactivations (see Methods). NF means non-functional.

b Measurements of 64 neurons with preactivations -5, -1, 0, 1, and 5, at 33 and 66 MHz with a power supply of 0.9 volts.

Errors are marked in red. c,d Mean accuracy of the output neuron activations, as a function of neuron preactivation ∆ and

supply voltage, measured at (c) 33 and (d) 66 MHz (see Methods).
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Powering the system with harvested energy
To validate the suitability of our circuit for energy harvesting applications, we connected it to a miniature AlGaAs/GaInP

heterostructure solar cell (see Fig. 4a and Methods). Fig. 4b displays a photograph of this cell, along with its current-voltage

characteristics measured under standardized one-sun AM1.5 illumination (see Methods). This type of solar cell, fabricated

following the procedure of ref.27 (see Methods), with a 1.73 eV bandgap, performs better than conventional silicon-based cells

under low-illumination conditions, making it particularly suitable for extreme edge applications. Additionally, due to the wide

bandgap, the open-circuit voltage provided by our solar cell (1.23 volts under high illumination) aligns with the nominal supply

voltage of our CMOS technology (1.2 volts), unlike silicon solar cells, whose maximum voltage is only 0.7 volts.

While energy harvesters are typically connected to electronic circuits through intricate voltage conversion and regulation

circuits, we demonstrate the resilience of our binarized neural network by directly connecting the power supply pads of our

circuit to the solar cell, without any interface circuitry. In those experiments, the solar cell is illuminated by a halogen lamp

(Fig. 4d). Fig. 4c presents the current voltage of the solar cell with this setup for various illuminations, expressed as “equivalent

solar powers” based on the short-circuit current of the solar cell (see Methods). Fig. 4e shows the measured accuracy of our

system, plotted as a function of neuron preactivation, similarly to Fig. 3d.

Under an equivalent solar power of 8 suns, the circuit performs almost equivalently to when powered by a 1.2 volts lab bench

supply. When illumination decreases, even under a very low equivalent solar power of 0.08 suns where the characteristics of the

solar cell is strongly degraded, the circuit remains functional. However, its error rate increases, especially for low-magnitude

preactivation values. The circuit naturally transitions to an approximative computing regime: neurons will large-magnitude

preactivations are correctly computed, but those with low-magnitude preactivations may exhibit errors.

Equivalent Solar Power MNIST Accuracy CIFAR-10 Accuracy

Baseline 97.2% 86.6%

8 suns 97.1% 83.6%

0.8 suns 96.9% 78.2%

0.36 suns 96.9% 78.3%

0.08 suns 96.5% 73.4%

Table 1. Simulated accuracy of solar-cell power a fully-connected (MNIST task) and a convolutional (CIFAR-10 task)

binarized neural network under various illuminations. The software baseline assumes no bit error (see Methods).

We now evaluate the performance of our circuit on neural networks. Our system functions with 128×64 memristor arrays;

however, in practice, neural networks can have various structures. To map neural networks to our hardware, we employ a

technique that subdivides neural network layers into several binarized arrays and then obtains the value of output neurons

through majority votes of the binary output of each array (see Figs. 5a,b). This method, which we describe in more detail in

Supplementary Note 4, is highly efficient in terms of hardware usage and causes only moderate accuracy degradation compared

to software-based neural networks on the two tasks considered here: Modified National Institute of Standards and Technology

(MNIST) handwritten digit recognition and CIFAR-10 image recognition.

To evaluate the classification accuracy of our hardware, we incorporated the error rates measured experimentally as a

function of preactivation value and illumination (Fig. 4d) into neural network simulations (see Methods). Table 1 lists the

obtained accuracy on a fully-connected neural network trained on MNIST and a convolutional neural network trained on

CIFAR-10 (see Methods). Remarkably, the MNIST accuracy is hardly affected by the bit errors in the circuit: even under

very low illumination equivalent to 0.08 suns, the MNIST accuracy drops by only 0.7 percentage points. Conversely, bit

errors significantly reduce the accuracy of the more demanding CIFAR-10 task. Under 0.08 suns, the accuracy drops from the

software baseline of 86.6% to 73.4%. The difference with the MNIST arises because more neurons tend to have low-magnitude

preactivation when solving CIFAR-10, as the differences between classes are more subtle.

To further understand the impact of low illumination on neural network performance, we plotted the t-distributed stochastic

neighbor embedding28 (t-SNE) representation of the MNIST test dataset in Fig. 5b. This technique represents each image

as a point in a two-dimensional space, where similar images cluster together and dissimilar ones reside at a distance. In the

left image, we marked in black the images that were correctly classified by a neural network under illumination equivalent

to 8 suns, but incorrectly under 0.8 suns. Interestingly, these images tend to be on the edges of the clusters corresponding

to the different digit classes, or even outliers that do not belong in a cluster. This suggests that the images that the network

starts misclassifying under 0.8 suns tend to be subtle or atypical cases. The right image shows that this effect intensifies under

illumination equivalent to 0.08 suns, with a few images inside clusters also being misclassified. Fig. 5c presents the same

analysis for the CIFAR-10 dataset. The trend of incorrectly classified images under low illumination tending to be edge or

atypical cases persists, albeit less pronounced than with MNIST.

7/15



−0.5 0.0 0.5 1.0 1.5
−5

0

5

10

15

20

a b

c
d

e

Voltage (V)

Voltage (V)

Preactivation Value (�)

Equivalent

Solar Power

C
u
rr

e
n
t 

(A
)

C
u
rr

e
n
t 

(m
A
)

E
q
u
iv

a
le

n
t 

S
o
la

r 
P
o
w

e
r

N
e
u
ro

n
 A

c
c
u
ra

c
y
 (

%
)

8 suns

0.8 suns

0.36 suns

0.08 suns

8 suns

0.8 suns

0.36 suns

0.08 suns

p-GaAs Substrate

p-GaAs: Be

p-Al0.51GaAs: Be

p-AlxGaAs: Be

p-Al0.25GaAs: Be

p-Al0.3GaAs: Be

n-InGaP: Si

n-AlInP: Si

n-GaAs: Si

Figure 4. Measurements of the binarized neural network powered by a miniature solar cell. a Schematic view of the

AlGaAs/GaInP heterostructure solar cell. b Photograph of the solar cell, and its measured current-voltage characteristics under

one-sun AM1.5 illumination provided by a standardized solar simulator (see Methods). c Current-voltage characteristics of the

solar cell for various illuminations provided by the halogen lamp (see Methods). d Photograph of the experimental setup where

the fabricated binarized neural network is powered by the solar cell illuminated by the halogen lamp. e Mean measured

accuracy of the output neuron activations, with the binarized neural network powered by the solar cell, as a function of neuron

preactivation ∆ and solar cell illumination.

8/15



…

…

…

…

M
a
jo

ri
ty

 w
in

s

𝒏𝒄𝒐𝒍𝒔 = 𝒏𝒐𝒖𝒕𝒑𝒖𝒕

𝒏𝒓𝒐𝒘𝒔
=𝒏𝒊𝒏𝒑𝒖𝒕

𝒏𝒓𝒐𝒘𝒔
=𝟔𝟒

𝒏𝒄𝒐𝒍𝒔 = 𝒏𝒐𝒖𝒕𝒑𝒖𝒕𝑖

𝑗

𝑊𝑗𝑖
Input

Output

𝑖 𝑗𝑊𝑗𝑖

a b

…

…

d

c

a b

Figure 5. Neural-network-level investigations. a,b Illustration of our method for mapping arbitrarily-shaped binarized

neural networks to 64×128 memristor arrays. The detailed methodology is presented in Supplementary Note 4. c t-distributed

stochastic neighbor embedding (t-SNE) representation of the MNIST test dataset. The datapoints incorrectly classified under

0.8 suns (left) and 0.08 suns (right) equivalent illumination, but which would be correctly classified under 8 suns, are marked in

black. These results are obtained using a binarized fully-connected neural network (see Methods). d Same graphs as c,

obtained for the CIFAR-10 dataset and using a convolutional neural network (see Methods).

9/15



Discussion

Our circuit exhibits an original behavior when solving tasks of varying difficulty levels. For simpler tasks such as MNIST, the

circuit maintains accuracy even when energy is scarce. When addressing more complex tasks, the circuit becomes less accurate

as energy availability decreases, but without failing completely. This self-adaptive approximate computing feature has several

roots and can be understood by the circuit’s memory read operations. They are highly robust due to their differential nature:

fluctuations of the power supply affect both branches of the sense amplifier equally. Still, when power voltage fluctuates or

becomes low, some memory reads fail. Nevertheless, binarized neural networks are highly robust to weight errors, which in

many cases do not change neuron activation29, 30. Even in the worst case, weight errors cause some images to be misclassified,

but these are typically atypical or edge cases. Therefore, when the power supply degrades, the AI naturally becomes less

capable of recognizing harder-to-classify images.

In this context of low-quality power supply, memristors offer distinct advantages over conventional static RAMs. While

static RAMs lose stored information upon power loss, memristors retain data. Furthermore, when the supply voltage becomes

low, static RAMs are prone to read disturb, meaning that a read operation can change the bit stored in a memory cell. In

contrast, memristors exhibit near-immunity to read disturb effects, especially when read by precharge sense amplifiers20 (we

observed no read disturb in our experiments), and are non-volatile (ten-years retention has been demonstrated in hafnium-oxide

memristors31).

After eliminating the energy used by the digital control circuitry (finite state machine), our circuit has an energy efficiency of

2.9 tera-operations per second and per watt (TOPS/W) under optimal conditions (10 MHz frequency, supply voltage of 0.7 volts).

By further subtracting the energy consumption of clock distribution and neuron registers that can be eliminated through clock

gating, and simultaneously optimizing the read operation (see Methods), energy efficiency increases to 22.5 TOPS/W. Due to

the digital nature of our circuit, this number would scale favorably if a more current CMOS process was used. For example,

employing the physical design kit of a fully-depleted silicon-on-insulator 28-nanometer CMOS process, we found that the

energy efficiency of a clock-gated design would reach 397 TOPS/W (see Methods). Supplementary Note 5 compares these

numbers and other properties of our digital system with fabricated emerging memory-based analog in-memory computing

circuits. The most noteworthy comparison is with a recent study that presents an analog magnetoresistive memory (MRAM)

based 64x64 binarized neural network fabricated in a 28-nanometer process14, which has a measured energy efficiency of

405 TOPS/W, which surpasses our projection slighly. However, this energy efficiency comes with the need for complex

compensation and calibration circuits, matched to a stable power supply, which is not suitable with the unreliable power supply

delivered by energy harvesters.

Our circuit can function with power supplies as low as 0.7 volts, enabling us to power it with a wide-bandgap solar cell

optimized for indoor applications, with an area of only a few square millimeters, even under low illumination equivalent to

0.08 suns. Such lightweight, ultrathin solar cells can also be transferred into a fully-integrated, self-powered device32, 33. Supply

voltages lower than 0.7 volts result in significant inaccuracies in memristor readings due to the high threshold voltages of

the thick-oxide transistors in our process. Employing a process with a lower threshold voltage thick-oxide transistor option

could enable operation at lower supply voltages, broadening compatibility with various solar and non-solar energy harvesters.

Some very low-voltage harvesters (e.g., thermoelectrics) may still require the voltage to be raised, which can be accomplished

on-chip using switched capacitor circuits like Dickson charge pumps34. Self-powered AI at the edge, therefore, offers multiple

opportunities to enable the development of intelligent sensors for health, safety, and environmental monitoring.
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Methods

Fabrication of the demonstrator
The MOS part of our demonstrator was fabricated using a low-power 130-nanometer foundry process up to the fourth layer

of metal. Memristors, composed of a TiN/HfOx/Ti/TiN stack, were then fabricated on top of exposed vias. The active

10-nanometer thick HfOx layer was deposited by atomic layer deposition. The Ti layer is also 10-nanometer thick, and the

memristor structure has a diameter of 300 nanometers. A fifth layer of metal was deposited on top of the memristors. 25

input/output pads are aligned to be compatible with a custom probe card. A packaged version of the demonstrator was also

assembled in a J-Leaded Ceramic Chip Carrier with 52 leads.

Design of the demonstrator
The memristor-based Binarized Neural Network is a hybrid CMOS/nanotechnology integrated circuit with distributed memory

modules within the logic. The design of the memory module includes the array and peripheral circuits, such as the XNOR-

augmented precharge sense amplifiers (Fig. 1b) and the level shifter circuits (Fig. 1c). The memory modules were designed

using a full-custom flow under the Cadence Virtuoso electronic design automation (EDA) tool and were simulated using the

Siemens Eldo simulator. Verification steps, i.e., layout versus schematic check and design rule check, were performed using

Calibre tools.

The level shifter circuit (Fig. 1e) was designed with thick-oxide MOS transistors supporting up to five volts. To isolate

the precharge current sense amplifier during the forming or programming operations, the four XNOR MOS transistors (the

ones connected to the input X in Fig. 1f) were designed with thick gate oxide. The sense amplifier itself was constructed using

thin gate oxide transistors. The memory modules architecture also includes four dedicated power rings: one for VDDR, one

for VDDC, one for VDD, and one for the ground (GND). An abstract view of the memory modules was generated using the

Cadence abstract generator. The power switch unit, which has to sustain up to 4.5 volts during the forming operation, was also

designed using thick-oxide transistors, following the same full-custom flow as the memory modules. A Liberty Timing Files

(.lib) related to the abstract view of the full custom blocks was handwritten and a Synopsys database file (.sdb) was generated

using the Synopys Library Compiler.

The overall machine core follows a digital on-top flow, where all digital blocks (e.g., controller logic, population count

decounter, neuron registers) are described using the VHSIC Hardware Description Language (VHDL), including the full

custom blocks entity, synthesized using the Synopsys Design Compiler, and finally placed and routed, including the full-custom

abstract view, using the Cadence Encounter RTL-to-GDSII tool, following a semi-automated flow developed by the foundry. All

digital circuits use thin-oxide high-threshold transistors and are biased to VDD. Logical verification of the core, including the

memory modules, described with an equivalent handmade VHDL behavioral description, and the power switch, described with

an equivalent handmade VerilogA description, were performed using Siemens Questa mixed-signal simulator. The memory

modules equivalent VHDL description and the power switch VerilogA equivalent descriptions were first assessed against their

electrical schematic counterparts, simulated with Siemens Eldo electrical simulator. The connection of the machine layout to

the 25 input/output pads was accomplished manually in a full-custom fashion.

Supplementary Note 1 describes the digital control circuitry and the power management unit with more technical details.

Supplementary Note 2 details the methodology used by our circuit for forming and programming the memristors. Supplementary

Note 3 lists the steps of the pipelined inference operation of the circuit.
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Fabrication of the solar cell

The fabrication of solar cells in this study was carried out according to the procedures described in ref.27. The semiconductor

stack was grown on a GaAs substrate using molecular beam epitaxy and consisted of the following sequence of layers:

p-GaAs:Be (300 nm), p-Al0.51GaAs:Be (50 nm), p-AlGaAs:Be with a linear gradient from 51% to 25% Al (100 nm), p-

Al0.25GaAs:Be (1900 nm), n-Al0.3GaAs:Si (100 nm), n-InGaP:Si (50 nm), n-AlInP:Si (20 nm), and n-GaAs:Si (300 nm) (see

Fig. 4a).

The front metal grid was defined using standard photolithography techniques, followed by metal evaporation (NiGeAu) and

lift-off processes. Wet chemical etching was used to separate the mesa structures of the different cells, and to etch the top 300

nm-thick GaAs contact layer outside the front grid area. The back contact (TiAu) is deposited on the backside of the substrate.

No anti-reflection coating was added. The size of the solar cells is 5 mm ×5 mm.

Measurements of the system with lab-bench power supply
The measurements of our system were conducted on the packaged version. The binarized neural network integrated circuit

is mounted on a dedicated printed circuit board (PCB) featuring level shifters and SubMiniature A (SMA) connectors (see

Fig. 2b). The PCB connects the different input and output signals of the packaged chip to an STM32F746ZGT6 microcontroller

unit, a Tektronix AWG2005 arbitrary waveform generator, and a Tektronix DPO 3014 oscilloscope. The voltage for the level

shifters of the PCB is supplied by an Agilent E3631A power supply. The microcontroller unit is connected to a computer using

a serial connection, while lab-bench equipments are connected to the computer using a National Instruments GPIB connection.

The whole setup is controlled using python within a single Jupyter notebook.

Supplementary Note 2 details the memristor forming and programming operations, and we summarize them here. Before

starting any measurement, all the memristors are formed, sequentially, under the control of the on-chip digital control block

(Supplementary Note 1). During this operation, the VDDC supply voltage is set to 4.5 volts, VDDR to 2.7 volts, and VDD to

1.2 volts, during ten microseconds. After this initial forming step, the memristor array is programmed with the desired pattern

(synaptic weights and neuron thresholds). The programmed data are transmitted to the microcontroller unit, which sends them

to the binarized neural network integrated circuit row-by-row. To program a memory cell to HRS, the digital control block

connects VDDC to 2.7 volts and VDDR to 4.5 volts, with VDD fixed at 1.2 volts. To program a memory cell to LRS, VDDC,

and VDDR are both connected to 2.7 volts, and VDD is connected to 1.2 volts. The two memristors of each bit cell are always

programmed in a complementary fashion (i.e., either LRS/HRS or HRS/LRS). The digital circuitry controls the programming

operations based on the weight value for each memristor, and applies the programming pulses during six microseconds.

To perform inference (see Supplementary Note 3), input neuron activations are sent through the microcontroller unit for

each row, and the output of the integrated circuit is captured by the microcontroller unit and stored in a comma-separated values

(CSV) file. To obtain the schmoo plots shown in Fig. 3, the power supply voltage VDD was varied from 1.2 to 0.7 volts, for all

considered operation frequencies. The saved outputs of the integrated circuit were compared to the expected outputs to extract

the system’s accuracy.

To measure the power consumption of the circuit (Fig. 2c), the VDD power supply of the test chip is connected to a Keithley

428 current amplifier. The output of the Keithley 428 is connected to the oscilloscope to obtain the current during inference.

Measurements of the system powered by the solar cell
We first characterized the current-voltage characteristics of the solar cell (Fig. 4b), using a certified solar simulator providing

a one-sun (100 mW/cm2) AM1.5 illumination. To power our binarized neural network by the solar cell, we switched to a

more accessible variable-illumination halogen lamp (Fig. 4c), whose spectrum does not match AM1.5 solar light. To obtain an

equivalent solar power, we measured the current-voltage characteristics of the solar cell under this lamp (Fig. 4b) using the

source measure unit mode of a Keysight B1530A unit. We calculate the equivalent solar power by dividing the short circuit

current by the one under one-sun AM1.5 illumination.

We then directly connected our binarized neural network to the solar cell and conducted inference measurements using the

same methodology as with the lab-bench power supply. To accomplish this, we connected all three power pads of the circuit

(VDD, VH, VM, see Supplementary Note 1) to the solar cell, as high supply voltages are not needed to perform inference. To

obtain the schmoo of Fig. 4e, we used the same methodology as for Fig. 3, but by varying the halogen light illumination instead

of the bench power supply voltage.

Energy consumption estimates
Energy measurements of the system (shown in Fig. 2c) cannot differentiate the consumption of the different elements of the

circuit, as they all share the same power supply. To overcome this limitation (as illustrated in Fig. 2s), we relied on computer

simulations of our circuit using commercial integrated circuit design tools.

We obtained energy estimates during the inference phase, after the memristors were formed and the memory programmed.

The consumption of the memristor arrays was determined using circuit simulations (based on the Siemens Eldo simulator),
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which also accounted for parasitic capacitance extracted from the memristor array layout. For the remainder of the system, we

analyzed it using the Cadence Voltus power integrity solution framework on the placed-and-routed design, incorporating all

parasitics. We utilized a value change dump (VCD) file obtained from a test bench simulation to ensure a realistic situation.

The memristor array blocks are full-custom and, therefore, not included in the standard library of the foundry. This raised a

concern regarding the continuous flow of values before and after the memristor array when performing the energy analysis. To

address this, we wrote a new liberty (.lib) file, specifically for use in the energy analysis, based on the actual output values

during simulation to ensure that the flow before and after the memory was respected during the inference phase.

In our fabricated circuit, the neuron registers are enabled when an XNOR-augmented sense operation is performed. We

chose not to clock-gate these registers to avoid any timing risk in our test chip; however, this strategy can be employed to

reduce the energy consumption of a final design. Therefore, we also designed a clock-gated version of our circuit and estimated

its energy consumption using the same flow as for the fabricated version. This clock-gated version also uses an optimized read

process requiring fewer clock cycles. We finally estimated the energy consumption of a scaled-down version of the design in a

commercial 28-nanometer fully-depleted silicon-on-insulator CMOS design kit. For this analysis, the memristor array was

entirely redesigned in the 28-nm design kit. For the digital part, we use a scaling factor relating the typical energy consumption

of equivalent circuits in the two commercial technology nodes.

Neural-network level investigations
For the neural network simulations presented in Fig. 2, we used a fully connected architecture for the MNIST handwritten

digit recognition task, and a convolutional neural network architecture for the CIFAR-10 image classification task. Except

for the input to the first layer, the activations and weights of the network were binarized, following the binarized neural

network implementation23. The fully connected (FC) network had two hidden layers with 1,102 and 64 neurons, whereas

the convolutional architecture was based on the VGG-16 network, and it consisted of 3x3 kernels for convolutions (Conv),

batch normalizations (BN), and nxn for MaxPool (MPn) and reads: [Conv 198, BN, Conv 198, MP 2, BN, Conv 354, BN,

Conv 354, MP2, BN, Conv 738, BN, Conv 406, MP3, FC(1102-1102-10)]. The number of hidden layer units and convolutional

filters were chosen in accordance with the dedicated mapping technique described in Supplementary Note 4, such that the total

number of blocks is always odd when a block size of 58 is used.

We trained the networks without errors and with the mapping technique implemented. The input neurons of the first layer

and the output neurons of the final layer are non-binary, so we did not include circuit-induced errors in these layers, as they

require different circuits. The convolutional network was trained for 500 epochs with the Adam optimizer with weight decay

and a cosine annealing learning rate scheduler. The fully-connected network was trained with the same optimizer for 200

epochs with a step learning rate scheduler35. Only after the training was completed were the errors introduced during the

inference step, using a dedicated Pytorch code reproducing the error rate measured experimentally (Fig. 4e). The error rate of

the circuit for a certain level of illumination and a certain preactivation ∆ was taken as the probability of having an error in the

neuronal output. The PyTorch deep learning framework was used to perform all the neural network simulations.
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