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Abstract—Energy consumption and carbon emissions are ex-
pected to be crucial factors for Internet of Things (IoT) appli-
cations. Both the scale and the geo-distribution keep increasing,
while Artificial Intelligence (AI) further penetrates the “edge”
in order to satisfy the need for highly-responsive and intelligent
services. To date, several edge/fog emulators are catering for IoT
testing by supporting the deployment and execution of AI-driven
IoT services in consolidated test environments. These tools enable
the configuration of infrastructures so that they closely resemble
edge devices and IoT networks. However, energy consumption
and carbon emissions estimations during the testing of AI services
are still missing from the current state of IoT testing suites.
This study highlights important questions that developers of AI-
driven IoT services are in need of answers, along with a set of
observations and challenges, aiming to help researchers designing
IoT testing and benchmarking suites to cater to user needs.

Index Terms—Internet of Things, Edge Computing, Software
Testing, Energy Modeling, Machine Learning.

I. INTRODUCTION

For a while now, IoT devices were considered sophisticated

endpoints connecting the physical with the digital world,

capable of serving data upstream to data centers. With recent

advancements, however, IoT hardware is vastly improving,

providing more compute power and storage capacity, while

a plethora of devices is also embedding specialized accel-

erators now [1]. This is moving the next generation of IoT

services towards AI and transforming edge computing into

Edge Intelligence [2]. However, large-scale AI is compute

hungry. Since 2012, the amount of computational power used

in the largest AI training is exponentially increasing, doubling

every 4 months (compared to Moore’s Law 24-month doubling

period). Hence, even if IoT hardware is advancing, highly

responsive AI is not a job for a single device. Therefore, it

is no wonder that the scale and distribution of AI-driven IoT

services are increasing.

Nonetheless, more compute effort results in more energy

consumption and this may well result in more carbon emis-

sions [3] [4]. Carbon emissions play a central role in climate

change as they are directly responsible for the greenhouse

effect [5]. Already, data centres use an estimated 200TWh per

year, equivalent to 1% of the global energy demand [6]. More-

over, Google reports that approximately 15% of it’s energy

use is attributed to AI/ML [7]. Also, with Gartner indicating

that 75% of enterprise data are expected to be created and

processed at the edge [8], one of the key challenges emerging

is the migration to sustainable edge micro-DCs. However,

the trend towards Edge Intelligence is not just difficult for

developers, but might also have a significant negative impact

on the environment [9].

There exists a plethora of tools catering for the rapid and

continuous testing of distributed IoT services [10]. These

tools enable the seamless deployment of IoT services in

consolidated environments where hosts can be configured to

replicate heterogeneous edge devices and networks, while the

service quality and fault tolerance can be evaluated at runtime

through emulation. Still, with climate change initiatives being

adopted by ICT organisations (e.g., CarbonTrust standard [11])

and with recent events (e.g., Ukraine war) intensifying the

move towards carbon-neutral commitments (e.g., EU green

deal [12], UK net-zero [13]), low carbon emissions will be

an important requirement for AI-driven IoT services. Yet,

IoT testing tools do not cater for in-depth benchmarking of

energy consumption and carbon emissions, thus excluding

the environmental footprint from the testing [10]. Part of the

reason testing tools do not report energy and carbon emis-

sions are the complexities in calculating accurate estimates.

These footprints require an understanding of emissions from

energy grids, assessing power drawn for computation and

communication, as well as navigating and integrating multiple

different tools [3]. This leaves users puzzled in regards to the

energy consumption and carbon footprint of their AI-driven

IoT services.

This paper highlights the need and challenges that come

with deploying AI-driven IoT services in edge computing

settings in terms of energy consumption and carbon footprints.

For this, we present a background on the metrics required

to give energy and carbon estimations. Next, we introduce

an edge-driven object detection application that serves as a

reference point for the following sections. Then, we discuss

important questions that IoT service developers are in need

of answers to and outline central challenges that should be
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addressed by the next generation of edge testing tools.

II. BACKGROUND

The following provides an overview of the background

knowledge to apprehend energy and carbon emission estima-

tion. With this overview, we show that there are a variety

of factors to consider so that IoT testing tools can provide

accurate estimations.

A. Energy Consumption

Energy consumption, denoted as E and measured in Joules,

is defined as the amount of energy required by a computing

system to execute a specific task. Energy is calculated with:

E = P · t (1)

In this, P , measured in Watts, is denoted as the power

drawn by the computing system and t, measured in seconds,

is the total amount of time required by the system to finish

the desired task. In line with the above definition, E can also

be measured in Wh, denoted as Watt-hours.

Power usage is reported as the sum of Pidle +Pdyn, where

Pidle denotes the load independent power drawn by the com-

puting system, even if no task is under execution, and Pdyn is

load dependent. Assuming the task is a software service (i.e.,

ML training) the key components contributing to Pdyn are the

use of processors, memory and graphic accelerators. The latter,

when available, consume the overwhelming majority of the

power drawn from the energy source [14]. To account for other

components (i.e., cooling) in a (micro) datacenter setting, one

can rely on the Power Usage Effectiveness (PUE) factor [15].

The PUE is an industry standard defined as the total energy

needed for all aspects of operation, including cooling, divided

by the energy used directly for computing:

PUE =
Total Energy Consumption

Computing Task Consumption
(2)

This factor scales the available power metrics by a mean

projected overhead for related power consumption. Therefore,

energy consumed by a computing system can be extended to:

E = PUE

∫ t

0

(Pidle + Pdyn) dt (3)

With a PUE closer to 1.0, energy is consumed purely

for the desired purpose. The mean PUE for data centres in

2020 was 1.58 [16], with cloud providers, i.e., Google and

AWS, reporting more efficient values in the range 1.1-1.2 [7].

However, current edge micro-DCs are not tailored for energy-

efficiency, e.g., due to their high degree of heterogeneity and

inefficient cooling, with reports indicating a mean PUE of

2.0 for 2021 and projections for 2040 lowering this to just

1.5 [17]. Therefore, in-place data processing and AI will face

the challenge to optimize energy consumption at the edge.

Fig. 1: Carbon intensity of various energy sources

B. Carbon Emissions

Carbon emissions are characterized by the Carbon Intensity

coefficient (CI). The CI is measured in gCO2eq/kWh
and accounts for the grams of carbon dioxide equivalent

greenhouse gas emissions (CO2eq) released for every KWh
of consumed energy. Carbon intensity is considered a stan-

dardized measure describing the “cleanliness” of the energy

consumed by a system (i.e., edge micro-DC) [18]. Hence,

CO2eq emissions are the product of two factors: They can

be calculated by multiplying the amount of energy consumed,

expressed in KWh, with the CI coefficient.

CO2eq = E · CI (4)

Still, the CI coefficient can be hard to obtain as it depends

on the sources the energy grid draws power from. In 2014,

the Intergovernmental Panel on Climate Change (IPCC) har-

monized the carbon intensity of the key electricity generating

sources with these reference values shown in Figure 1. Many

national and regional authorities report a fixed carbon intensity

coefficient, even for the duration of an entire year. This

coefficient is calculated after aggregating and weighting the

region’s energy production (~β) from various sources (c ∈ S),

often denoted as the energy mix.

CIgrid =

|S|∑
j

βj · cj (5)

For example, the latest report by the European Environment

Agency states that for 2020 the CO2 emission intensity

for Cyprus was 621, for Germany 311, and for Sweden 13

gCO2/KWh, respectively [19]. While the CI coefficient can

greatly differ across countries and regions, as we will show,

carbon emissions can vary even throughout the day. These

large temporal variations in carbon intensity, due to changes

in the energy mix, make it difficult to acquire and calculate

accurate estimations during software testing to reduce and

optimize carbon emissions.

III. RESEARCH QUESTIONS & OBSERVATIONS

This section highlights key questions that users are faced

with when assessing the energy consumption and carbon



emissions of AI-driven IoT services during application testing,

after introducing an edge-AI reference scenario.

A. Reference Scenario

As a reference scenario, let us consider an AI-driven IoT

service where numerous geo-dispersed IoTs (i.e., cameras,

drones) can be employed for object detection at a city-scale

level. To aid recurrent model training at a neighborhood level,

improve privacy and facilitate local device coordination, edge

micro-DCs are deployed and scattered across the city.

Unless otherwise stated, we will assume a baseline con-

figuration where the adopted edge micro-DC is powered by

a DELL PowerEdge R610 server (12cores@2.4GHz, 12GB

memory, max 330W) and equipped with a Nvidia T4 GPU

(320 tensor cores, 16GB, max 70W). For the ML task we

employ the TensorFlow benchmark suite to output a CNN

model for object detection trained with the ImageNet dataset

(144GB, 1.3M images) [20]. In turn, TensorFlow Lite is used

to deploy the trained models for on-device inference.

B. When to train a model?

Many national and regional authorities report a fixed car-

bon intensity coefficient, even for the duration of an entire

year. However, carbon intensity may drastically fluctuate even

throughout various periods of the day. Figure 2 depicts an

example, where the carbon intensity is computed for a given

day in Cyprus. The reason carbon intensity fluctuates is that

it depends on energy production and specifically the sources

powering the energy grid. Figure 3 illustrates this for Cyprus,

where the use of low-carbon energy sources (solar and wind)

start and peak during day time with the majority originating

from solar power (>80%). As such, the amount of carbon

emissions attributed to model training can drastically differ,

depending on when a model is trained.

With the above in mind, let us consider power measurements

extracted from training the ML model of the reference scenario

for almost 4.5 hours on the described edge micro-DC. Figure 4

depicts the estimated carbon footprint of the ML training for

different periods of the (same) day in Cyprus. From this figure

we observe that training the model during midday features a

carbon footprint that is 1.64kg less that initiating training at

6pm and 2.3kg less than at 9pm.

Observation: When a model is trained can have a sig-

nificant impact in terms of carbon emissions. The footprint

depends on the energy sources currently in use by the grid

that power is drawn from. Therefore, organisations wanting

to reduce their carbon footprint should consider training their

ML models when low-carbon energy sources are producing

power for the energy grid that the computing system consumes

energy from.

C. Where to train a model?

At this point, one may advocate that Cyprus may not be

an ideal country to train ML models since it makes heavy

use of high-carbon energy sources (i.e., oil) [21]. Therefore,

other European countries could be explored. As an example,

Fig. 2: Cyprus 24h carbon intensity

Fig. 3: Cyprus 24h electricity production

Fig. 4: Carbon footprint for different countries and time in day

Figures 5 and 6 depict the energy production and carbon

intensity for Sweden during the same referenced day. Sweden

is the EU member state with the lowest carbon footprint [19].

From these figures we observe that 99% of Sweden’s energy

production comes from low-carbon sources (approx. 34%

hydro, 45% nuclear and the rest is a mix of wind, geothermal

and solar energy). Sweden’s carbon intensity coefficient is also

relatively stable throughout the day. This is ideal in the cases

model training simply cannot wait. Based on these estimates,

the same CNN model will be trained in Sweden with a carbon

footprint of just 0.21-0.24kg, no matter the time throughout

the day. This footprint is equivalent to a 95% reduction to ML

training, even, midday in Cyprus.

Observation: The ML model training process can have

a significantly different environmental footprint over differ-

ent locations. Therefore, organisations wanting to reduce the

environmental impact of their model training should explore

potential advantages of moving their workloads to low-carbon

grid energy.



Fig. 5: Sweden 24h carbon intensity

Fig. 6: Sweden 24h electricity production

D. What is the impact of model inference?

The vast majority of AI studies consider accuracy as the

pertinent performance measure, ignoring the impact ML has on

deployed devices and the environment [22]. Towards this, let

us consider three state-of-the-art model architectures for ML

classification that can be used for object detection. Specifically,

we will consider ResNet50 (used in Sections III-B and III-C),

SqueezeNet and MobileNetV2.

We now focus on ML inference and its impact to the

reference edge micro-DC. For this, we use binary builds

from the TensorFlow model zoo for the adopted architec-

tures trained using the reference dataset [23]. Table I depicts

the results. We immediately observe the high accuracy of

ResNet50, but through the additional metrics we can also label

it as both energy-hungry and latent in terms of inference. In

turn, SqueezeNet is a CNN architecture designed for model

compactness, delivering a low memory footprint suitable even

for small IoT settings. In line with this, inference time is less

than a fifth compared to ResNet50. However, this performance

comes with a drop in accuracy of more than 20% compared to

ResNet50. In contrast, MobileNetV2 presents an architecture

that achieves a small runtime footprint, with only a 3%

accuracy reduction, and when compared to ResNet50 reduces

energy consumption by almost 90%.

Observation: There is often more than one ML model ar-

chitecture that can be used for a task but the impact on system

utilization as well as the energy footprint (and consequently

battery autonomy) can differ significantly. We must move from

solely looking at accuracy metrics to also examining resource

overhead, energy footprint and environmental impact metrics

when testing and releasing models.

E. How does resource heterogeneity impact ML inference?

Resource heterogeneity in IoT is to be expected in many

different forms (i.e., resource availability, different devices,

high-priority base loads). After conducting the Section III-D

experiments that examine both accuracy and system measures,

the MobileNetV2 architecture seems to come off favorably, at

least for the reference scenario. In the next line of experi-

mentation we employ MobileNetV2 and study the impact of

resource heterogeneity on inference and power consumption.

For this, we consider both different devices and computational

power by capping the CPUs available. We did this on the

server of our reference scenario and on a Raspberry Pi 4

model B. The open-source Fogify framework [24] was used for

this as it supports resource capping on host environments and

provides a plugin interface so that custom monitoring can be

implemented easily [25]. These features were used to integrate

smart energy meters as Fogify does not currently support

energy measurements out-of-the-box. Table II depicts our

results. After studying the table, at first, one can observe that

for both devices as compute availability increases, inference

time is reduced, while the power consumption increases. Yet,

the behavior of both metrics cannot easily be characterized

with a mathematical distribution. Several hardware phenomena

actually take place under the hood (i.e., dynamic voltage

scaling, cooling, etc.) which manifest in trade-offs that must

be examined carefully. Moreover, taking a quick glance at both

devices, we see that from a sustainable computing perspective,

employing a Raspberry Pi 4 at full capacity can be much better

than using a server at 50% capacity with power reduced by

95% for a 30% impact on inference time (60ms).

Observation: Different devices and also different resource

configurations can have a considerable impact on both a

model’s inference performance as well as power required

for computations. These trade-offs should be tested to find

the configurations that deliver the required performance and

reliability at the lowest environmental impact.

IV. CHALLENGES FOR IOT TESTING FRAMEWORKS

We imagine IoT testing tools will support the assessment of

the energy consumption and carbon emissions for future AI-

driven IoT applications. For this, testing tools will likely mon-

itor the resource usage of applications running on emulated

infrastructures. To then translate resource usage into energy

consumption, the testing tools will presumably use power

models. To translate energy into carbon emissions, these tools

will need further data such as the carbon intensity of the energy

mix during task execution. While this idea of performance

testing of actual software for estimating carbon emissions

is straightforward, there are many challenges in integrating

this into IoT testing tools so that users get answers to the

previously raised questions. This section lists and discusses

challenges we foresee for effectively integrating energy con-

sumption and carbon emissions testing into the current state

of IoT testing tools. These challenges can be a starting point

for new research in the area of IoT testing. However, this

list should not be considered final or complete. For instance,

emissions can also be associated with the production of

devices that cannot be captured by simply translating current

resource usage to power consumption and emissions.



TABLE I: Performance comparison of various ML model architectures during inference

Model
Params

(Million)

Size

(MB)

Accuracy

(%)

Mean Inference Time

(ms)

Energy Consumption

(Wh per 5K images)

ResNet50 25.6 99 73 1116 373
SqueezeNet 1.25 5 52 212 51
MobileNetV2 3.4 14 70 143 39

TABLE II: Compute availability impact on ML inference

Device Cores
Mean Inference Time

(ms)

Mean Power Drawn

(W)

Server 3 432 87
6 210 91
9 152 139
12 143 197

RPi 1 693 4.2
2 331 5.1
3 273 5.2
4 269 5.9

A. Configuration of Power Models

If power models are used to translate resource usage into

energy consumed, these models will need to be supplied to

IoT testing tools. Configuring appropriate power models can

quickly become a larger configuration effort for users of IoT

testing tools. This is especially true when more resources than

individual devices are to be assessed for AI services. Imagine

large-scale heterogeneous IoT deployments that span different

devices, edge and cloud resources, graphical AI accelerators,

as well as a variety of local and wide-area networking links.

Furthermore, this task becomes even more complex when

infrastructure is distributed across geographic regions.

Data points to model the power consumption of particular

resources can often be found online and in the literature. The

community could also benefit by sharing power models for

common infrastructure components in repositories. However,

the majority of these approaches neglect the power required

for housing resources. For instance, considerable energy is also

required to cool compute resources under load [26]. Another

way to get accurate models is to measure energy consumption

on particular resources, extracting load-dependent power met-

rics of the usage of CPUs, GPUs, memory, and other resources.

A study from Google found that power/carbon calculators

overestimate calculations by not updating model parameters

(i.e., CI, PUE) [27]. However, obtaining measurements across

large, geo-distributed IoT deployments is a costly endeavor.

Recommendation: IoT testing tools should support their

users in finding power models for IoT infrastructures, lever-

aging for instance shared repositories for common infrastruc-

ture components, while also enabling the integration of real

measurements to fine-tune power model accuracy.

B. Integration of Carbon Emissions Data

If the carbon intensity of an energy mix is used to trans-

late energy consumed into emissions, then this data must

be integrated into IoT testing tools. Some energy providers

now release production data and some even have APIs (i.e.,

data for Cyprus features a 15min granularity), while there

also commercial online services that aggregate carbon data

for many regions of the world [28]. However, there is no

data available for all providers or regions, while schemes

for extraction and usage differ. Furthermore, this data can be

historical when testing a range of scenarios based on past com-

positions of energy mixes, or, can be a forecast, when testing

for instance scenarios based on the availability of renewable

energy within the next day. Similar to power models, this will

need to be configured with testing results dependent on these

configurations. Moreover, infrastructures might be supplied by

multiple power sources. Computing infrastructure could, for

example, be powered by on-site renewable energy sources such

as wind or solar, while also being connected to a public energy

grid. This would make it even harder to configure where

the energy for computational and communication resources is

coming from at any given time and, thus, how much emissions

are associated with any energy consumption.

Another challenge with using carbon intensity to convert

energy consumption into emissions is that this coefficient only

captures the amount of emissions of the entire energy mix:

Based on the energy mix each KWh used in the system

is associated with the same amount of CO2eq greenhouse

gases. However, an energy mix does not really specify which

energy is used for any particular consumption. It is fully

possible that we might explore shifting larger workloads to

a time or a place with a low-carbon energy mix, believing this

will save emissions, yet in reality for this additional energy

consumption, we could end up having more power generated

from, for instance, fossil fuels like coal or gas. This is a

known issue with the metric of carbon intensity, but since

it is much harder to estimate where any particular energy is

coming from, carbon-aware computing approaches still resort

to simply using carbon intensity as their signal [29]–[31].

Recommendation: IoT testing tools should provide a

“quick-start” carbon estimation process to quickly get novice

users results, yet also convey limitations of these calculations.

In turn, they should also support the integration of more

representative carbon intensity data for changing energy mixes.

C. Testing Trade-Offs

There are many significant trade-offs that users must de-

velop an understanding for testing AI-driven IoT applications.

One example is the trade-off to save energy by reducing the

frequency of model re-training, as well as moving model train-

ing to times when low-carbon energy is available (observa-

tion 1). However, waiting for the ideal moment to train a model

presents itself with challenges. The purpose of retraining a

model is so that changes in the data distribution, also known

as concept drift, are timely reflected in the model during

inference. Hence, finding the sweet spot between accuracy

and energy saving boils down to how long training can be

postponed without hampering accuracy.



Another significant trade-off to investigate is whether an

AI application should be moved to a location with a better

availability of low-carbon energy (observation 2). However,

there are costs in terms of time, energy, and emissions for

migration [32]. Often, AI requires large volumes of training

data, the models can have a significant size, and moving

data can incur delays. For example, the ImageNet dataset is

144GB and the time to move it over a 100Mbps link is 3.5

hours. Assessing this trade-off can be difficult as the costs of

moving data amortize only over time, but energy systems are

often highly dynamic, so it is not clear whether anticipated

benefits actually accrue. In turn, moving data across regions

is not a simple process with potential legal and privacy aspects

contradicting the benefits of in-place processing and edge

intelligence in general. Finally, another trade-off comes by

opting for the use of a lightweight model drawing considerable

energy savings (observation 3). However, saving energy must

never come at the cost of significantly degrading accuracy.

Recommendation: IoT testing tools should aid in the

assessment of trade-offs so that users can take informative

decisions. This includes finding trade-off sweet spots during

testing to avoid catastrophic results in production such as

significant overheads or accuracy degradation. To do so, testing

tools must integrate, and maybe even innovate, a variety of

benchmark measures so that users can sufficiently evaluate,

beyond model accuracy, the impact of a model on system

utilization, energy consumption and carbon footprint.

D. Selection and Execution of Test Cases

The energy footprint and carbon emissions of AI applica-

tions that run on large IoT infrastructures, powered by par-

ticular energy systems, depend on the particular applications,

infrastructures, and energy mix. Moreover, all three factors are

highly dynamic. Therefore, test results will rightly be different

depending on the time, date, and location. Workloads, mobile

infrastructures, and energy mixes change in seasonal patterns,

while there are also trends that lead to more permanent change.

This can include increasing usage of an application over time

or a shift towards more renewable energy sources in a regional

energy system. This makes it important to configure sets of

test cases that cover different possible situations.

At the same time, testing the footprint of an AI-driven

IoT application will come with its own footprint, especially

when considering multiple scenarios on large-scale emulated

infrastructures. There are strong benefits to testing software

continuously, with tests triggered on change of application

code or infrastructure definitions. Yet, if the goal is to de-

velop and operate AI services more resource-efficient and

sustainable, then testing towards this objective should not

consume large amounts of energy with considerable additional

emissions.

Recommendation: IoT testing tools should help developers

select a good set of representative scenarios over possible

times and locations, balancing the requirement to cover the

different possible situations with the goal to use few resources

to assess these scenarios. If indeed multiple variants of a basic

scenario are tested, tools should further provide feedback that

effectively generalizes from any of the specific situations.

V. RELATED WORK

The related work that could help to evaluate the energy

consumption and carbon footprint of AI-driven IoT services

falls into three categories.

Fog and edge emulators, like Fogify [24], Mockfog [33],

Marvis [34] or IOTier [35], enable the testing of actual

IoT software behaviour in different scenarios by shaping the

infrastructure to replicate heterogeneous edge devices and net-

works. While few fog emulators include energy consumption

estimation [10], there is currently no tool that addresses the

particular challenges of estimating energy consumption and

carbon emissions of AI-driven IoT services.

Fog and edge simulators mostly focus on the behavioral

simulation of computational and networking resources and

many, like EdgeCloudSim [36] or IOTSim [37], do not support

energy and emission modeling. Others, like iFogSim [38] and

PureEdgeSim [39], can simulate power utilization, but only

for system entities such as cloud and fog nodes (iFogSim) or

edge devices and their local network (PureEdgeSim). On the

other hand, LEAF [40] is a simulator that primarily focuses

on the simulation of power consumption of complete edge

and fog systems. While such fog and edge simulators can

provide valuable insights by allowing specific scenarios to be

assessed, modeling actual software using these simulators is

often difficult and requires careful configuration of simulation

parameters. Furthermore, there are no simulators that focus on

edge AI use cases or provide carbon emission estimations.

Finally, we note that there are carbon emission estimation

tools that attempt to estimate the emissions based high-level

job characteristics. Some of these estimation tools include

carbon intensity data from cloud providers [41], that allow

for the emissions estimation of compute nodes based on the

type of cloud instance, duration of usage and location of

the datacenter. Others [42] specialize on ML applications

using the energy consumption of popular GPUs as basis.

Carbontracker [43] measures the power consumption of one or

a few training epochs to predict the total power usage of NN-

based applications. All these emission estimation tools focus

on the power consumption of computing on a few central

compute nodes, instead of distributed edge AI workloads.

VI. SUMMARY

This work presents a study of the IoT testing landscape for

energy- and carbon-aware AI-driven IoT services. With the

increasing adoption of compute-hungry AI into IoT services,

we need novel techniques that balance energy and compute

demands to achieve more resource-efficient and sustainable

IoT services. Towards this, we highlighted key questions for

developing energy-efficient and carbon-aware AI-driven IoT

services. After introducing these questions with concrete ex-

amples, we present our observations and elaborate on what we

believe must be the future directions and objectives that should

be addressed with the next generation of EdgeAI emulators



and IoT testing tools. In the future, we want to address these

directions with new methods that can be integrated by open

and popular testing suites.
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