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Abstract—Energy consumption and carbon emissions are ex-
pected to be crucial factors for Internet of Things (IoT) appli-
cations. Both the scale and the geo-distribution keep increasing,
while Artificial Intelligence (AI) further penetrates the ‘“edge”
in order to satisfy the need for highly-responsive and intelligent
services. To date, several edge/fog emulators are catering for IoT
testing by supporting the deployment and execution of Al-driven
IoT services in consolidated test environments. These tools enable
the configuration of infrastructures so that they closely resemble
edge devices and IoT networks. However, energy consumption
and carbon emissions estimations during the testing of Al services
are still missing from the current state of IoT testing suites.
This study highlights important questions that developers of Al-
driven IoT services are in need of answers, along with a set of
observations and challenges, aiming to help researchers designing
IoT testing and benchmarking suites to cater to user needs.

Index Terms—Internet of Things, Edge Computing, Software
Testing, Energy Modeling, Machine Learning.

I. INTRODUCTION

For a while now, [oT devices were considered sophisticated
endpoints connecting the physical with the digital world,
capable of serving data upstream to data centers. With recent
advancements, however, IoT hardware is vastly improving,
providing more compute power and storage capacity, while
a plethora of devices is also embedding specialized accel-
erators now [1]. This is moving the next generation of IoT
services towards Al and transforming edge computing into
Edge Intelligence [2]. However, large-scale Al is compute
hungry. Since 2012, the amount of computational power used
in the largest Al training is exponentially increasing, doubling
every 4 months (compared to Moore’s Law 24-month doubling
period). Hence, even if IoT hardware is advancing, highly
responsive Al is not a job for a single device. Therefore, it
is no wonder that the scale and distribution of Al-driven IoT
services are increasing.

Nonetheless, more compute effort results in more energy
consumption and this may well result in more carbon emis-
sions [3] [4]]. Carbon emissions play a central role in climate
change as they are directly responsible for the greenhouse
effect [5]]. Already, data centres use an estimated 200TWh per
year, equivalent to 1% of the global energy demand [6]]. More-
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over, Google reports that approximately 15% of it’s energy
use is attributed to AI/ML [7]]. Also, with Gartner indicating
that 75% of enterprise data are expected to be created and
processed at the edge [8], one of the key challenges emerging
is the migration to sustainable edge micro-DCs. However,
the trend towards Edge Intelligence is not just difficult for
developers, but might also have a significant negative impact
on the environment [9].

There exists a plethora of tools catering for the rapid and
continuous testing of distributed IoT services [10]. These
tools enable the seamless deployment of IoT services in
consolidated environments where hosts can be configured to
replicate heterogeneous edge devices and networks, while the
service quality and fault tolerance can be evaluated at runtime
through emulation. Still, with climate change initiatives being
adopted by ICT organisations (e.g., CarbonTrust standard [11]])
and with recent events (e.g., Ukraine war) intensifying the
move towards carbon-neutral commitments (e.g., EU green
deal [12]], UK net-zero [13]]), low carbon emissions will be
an important requirement for Al-driven IoT services. Yet,
IoT testing tools do not cater for in-depth benchmarking of
energy consumption and carbon emissions, thus excluding
the environmental footprint from the testing [[10]. Part of the
reason testing tools do not report energy and carbon emis-
sions are the complexities in calculating accurate estimates.
These footprints require an understanding of emissions from
energy grids, assessing power drawn for computation and
communication, as well as navigating and integrating multiple
different tools [3]]. This leaves users puzzled in regards to the
energy consumption and carbon footprint of their Al-driven
IoT services.

This paper highlights the need and challenges that come
with deploying Al-driven IoT services in edge computing
settings in terms of energy consumption and carbon footprints.
For this, we present a background on the metrics required
to give energy and carbon estimations. Next, we introduce
an edge-driven object detection application that serves as a
reference point for the following sections. Then, we discuss
important questions that IoT service developers are in need
of answers to and outline central challenges that should be
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addressed by the next generation of edge testing tools.

II. BACKGROUND

The following provides an overview of the background
knowledge to apprehend energy and carbon emission estima-
tion. With this overview, we show that there are a variety
of factors to consider so that IoT testing tools can provide
accurate estimations.

A. Energy Consumption

Energy consumption, denoted as E' and measured in Joules,
is defined as the amount of energy required by a computing
system to execute a specific task. Energy is calculated with:

E=P-t (1)

In this, P, measured in Watts, is denoted as the power
drawn by the computing system and ¢, measured in seconds,
is the total amount of time required by the system to finish
the desired task. In line with the above definition, £ can also
be measured in W h, denoted as Watt-hours.

Power usage is reported as the sum of Pjgc + Payn, where
P; 41 denotes the load independent power drawn by the com-
puting system, even if no task is under execution, and Py, is
load dependent. Assuming the task is a software service (i.e.,
ML training) the key components contributing to Pg,, are the
use of processors, memory and graphic accelerators. The latter,
when available, consume the overwhelming majority of the
power drawn from the energy source [|14]]. To account for other
components (i.e., cooling) in a (micro) datacenter setting, one
can rely on the Power Usage Effectiveness (PUE) factor [15].
The PUE is an industry standard defined as the total energy
needed for all aspects of operation, including cooling, divided
by the energy used directly for computing:

Total Energy Consumption

PUE = )

Computing Task Consumption

This factor scales the available power metrics by a mean
projected overhead for related power consumption. Therefore,
energy consumed by a computing system can be extended to:

t
FE = PUE/ (Pidle + den) dt 3)
0

With a PUE closer to 1.0, energy is consumed purely
for the desired purpose. The mean PUE for data centres in
2020 was 1.58 [16], with cloud providers, i.e., Google and
AWS, reporting more efficient values in the range 1.1-1.2 [[7]].
However, current edge micro-DCs are not tailored for energy-
efficiency, e.g., due to their high degree of heterogeneity and
inefficient cooling, with reports indicating a mean PUE of
2.0 for 2021 and projections for 2040 lowering this to just
1.5 [17]. Therefore, in-place data processing and Al will face
the challenge to optimize energy consumption at the edge.
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Fig. 1: Carbon intensity of various energy sources

B. Carbon Emissions

Carbon emissions are characterized by the Carbon Intensity
coefficient (CI). The CI is measured in gCOseq/kWh
and accounts for the grams of carbon dioxide equivalent
greenhouse gas emissions (C'Ozeq) released for every KWh
of consumed energy. Carbon intensity is considered a stan-
dardized measure describing the “cleanliness” of the energy
consumed by a system (i.e., edge micro-DC) [18]]. Hence,
COqeq emissions are the product of two factors: They can
be calculated by multiplying the amount of energy consumed,
expressed in KWh, with the CI coefficient.

COseq=FE-CI 4

Still, the CI coefficient can be hard to obtain as it depends
on the sources the energy grid draws power from. In 2014,
the Intergovernmental Panel on Climate Change (IPCC) har-
monized the carbon intensity of the key electricity generating
sources with these reference values shown in Figure [T} Many
national and regional authorities report a fixed carbon intensity
coefficient, even for the duration of an entire year. This
coefficient is calculated after aggregating and weighting the
region’s energy production () from various sources (c € ),
often denoted as the energy mix.

S|

CIg”*d = Zﬁj -Gy (5)
J

For example, the latest report by the European Environment
Agency states that for 2020 the C'O, emission intensity
for Cyprus was 621, for Germany 311, and for Sweden 13
gCOy/ KW h, respectively [19]. While the CI coefficient can
greatly differ across countries and regions, as we will show,
carbon emissions can vary even throughout the day. These
large temporal variations in carbon intensity, due to changes
in the energy mix, make it difficult to acquire and calculate
accurate estimations during software testing to reduce and
optimize carbon emissions.

III. RESEARCH QUESTIONS & OBSERVATIONS

This section highlights key questions that users are faced
with when assessing the energy consumption and carbon



emissions of Al-driven IoT services during application testing,
after introducing an edge-Al reference scenario.

A. Reference Scenario

As a reference scenario, let us consider an Al-driven IoT
service where numerous geo-dispersed IoTs (i.e., cameras,
drones) can be employed for object detection at a city-scale
level. To aid recurrent model training at a neighborhood level,
improve privacy and facilitate local device coordination, edge
micro-DCs are deployed and scattered across the city.

Unless otherwise stated, we will assume a baseline con-
figuration where the adopted edge micro-DC is powered by
a DELL PowerEdge R610 server (12cores@2.4GHz, 12GB
memory, max 330W) and equipped with a Nvidia T4 GPU
(320 tensor cores, 16GB, max 70W). For the ML task we
employ the TensorFlow benchmark suite to output a CNN
model for object detection trained with the ImageNet dataset
(144GB, 1.3M images) [20]. In turn, TensorFlow Lite is used
to deploy the trained models for on-device inference.

B. When to train a model?

Many national and regional authorities report a fixed car-
bon intensity coefficient, even for the duration of an entire
year. However, carbon intensity may drastically fluctuate even
throughout various periods of the day. Figure 2| depicts an
example, where the carbon intensity is computed for a given
day in Cyprus. The reason carbon intensity fluctuates is that
it depends on energy production and specifically the sources
powering the energy grid. Figure 3] illustrates this for Cyprus,
where the use of low-carbon energy sources (solar and wind)
start and peak during day time with the majority originating
from solar power (>80%). As such, the amount of carbon
emissions attributed to model training can drastically differ,
depending on when a model is trained.

With the above in mind, let us consider power measurements
extracted from training the ML model of the reference scenario
for almost 4.5 hours on the described edge micro-DC. Figure ]
depicts the estimated carbon footprint of the ML training for
different periods of the (same) day in Cyprus. From this figure
we observe that training the model during midday features a
carbon footprint that is 1.64kg less that initiating training at
6pm and 2.3kg less than at 9pm.

Observation: When a model is trained can have a sig-
nificant impact in terms of carbon emissions. The footprint
depends on the energy sources currently in use by the grid
that power is drawn from. Therefore, organisations wanting
to reduce their carbon footprint should consider training their
ML models when low-carbon energy sources are producing
power for the energy grid that the computing system consumes
energy from.

C. Where to train a model?

At this point, one may advocate that Cyprus may not be
an ideal country to train ML models since it makes heavy
use of high-carbon energy sources (i.e., oil) [21]]. Therefore,
other European countries could be explored. As an example,
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Figures [3] and [6] depict the energy production and carbon
intensity for Sweden during the same referenced day. Sweden
is the EU member state with the lowest carbon footprint [[19].
From these figures we observe that 99% of Sweden’s energy
production comes from low-carbon sources (approx. 34%
hydro, 45% nuclear and the rest is a mix of wind, geothermal
and solar energy). Sweden’s carbon intensity coefficient is also
relatively stable throughout the day. This is ideal in the cases
model training simply cannot wait. Based on these estimates,
the same CNN model will be trained in Sweden with a carbon
footprint of just 0.21-0.24kg, no matter the time throughout
the day. This footprint is equivalent to a 95% reduction to ML
training, even, midday in Cyprus.

Observation: The ML model training process can have
a significantly different environmental footprint over differ-
ent locations. Therefore, organisations wanting to reduce the
environmental impact of their model training should explore
potential advantages of moving their workloads to low-carbon
grid energy.
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D. What is the impact of model inference?

The vast majority of Al studies consider accuracy as the
pertinent performance measure, ignoring the impact ML has on
deployed devices and the environment [22]. Towards this, let
us consider three state-of-the-art model architectures for ML
classification that can be used for object detection. Specifically,
we will consider ResNet50 (used in Sections and [[II-C)),
SqueezeNet and MobileNetV2.

We now focus on ML inference and its impact to the
reference edge micro-DC. For this, we use binary builds
from the TensorFlow model zoo for the adopted architec-
tures trained using the reference dataset [23]. Table [I] depicts
the results. We immediately observe the high accuracy of
ResNet50, but through the additional metrics we can also label
it as both energy-hungry and latent in terms of inference. In
turn, SqueezeNet is a CNN architecture designed for model
compactness, delivering a low memory footprint suitable even
for small IoT settings. In line with this, inference time is less
than a fifth compared to ResNet50. However, this performance
comes with a drop in accuracy of more than 20% compared to
ResNet50. In contrast, MobileNetV2 presents an architecture
that achieves a small runtime footprint, with only a 3%
accuracy reduction, and when compared to ResNet50 reduces
energy consumption by almost 90%.

Observation: There is often more than one ML model ar-
chitecture that can be used for a task but the impact on system
utilization as well as the energy footprint (and consequently
battery autonomy) can differ significantly. We must move from
solely looking at accuracy metrics to also examining resource
overhead, energy footprint and environmental impact metrics
when testing and releasing models.

E. How does resource heterogeneity impact ML inference?

Resource heterogeneity in IoT is to be expected in many
different forms (i.e., resource availability, different devices,

high-priority base loads). After conducting the Section [III-D
experiments that examine both accuracy and system measures,
the MobileNetV2 architecture seems to come off favorably, at
least for the reference scenario. In the next line of experi-
mentation we employ MobileNetV2 and study the impact of
resource heterogeneity on inference and power consumption.
For this, we consider both different devices and computational
power by capping the CPUs available. We did this on the
server of our reference scenario and on a Raspberry Pi 4
model B. The open-source Fogify framework [24] was used for
this as it supports resource capping on host environments and
provides a plugin interface so that custom monitoring can be
implemented easily [25]]. These features were used to integrate
smart energy meters as Fogify does not currently support
energy measurements out-of-the-box. Table depicts our
results. After studying the table, at first, one can observe that
for both devices as compute availability increases, inference
time is reduced, while the power consumption increases. Yet,
the behavior of both metrics cannot easily be characterized
with a mathematical distribution. Several hardware phenomena
actually take place under the hood (i.e., dynamic voltage
scaling, cooling, etc.) which manifest in trade-offs that must
be examined carefully. Moreover, taking a quick glance at both
devices, we see that from a sustainable computing perspective,
employing a Raspberry Pi 4 at full capacity can be much better
than using a server at 50% capacity with power reduced by
95% for a 30% impact on inference time (60ms).

Observation: Different devices and also different resource
configurations can have a considerable impact on both a
model’s inference performance as well as power required
for computations. These trade-offs should be tested to find
the configurations that deliver the required performance and
reliability at the lowest environmental impact.

IV. CHALLENGES FOR IOT TESTING FRAMEWORKS

We imagine IoT testing tools will support the assessment of
the energy consumption and carbon emissions for future Al-
driven IoT applications. For this, testing tools will likely mon-
itor the resource usage of applications running on emulated
infrastructures. To then translate resource usage into energy
consumption, the testing tools will presumably use power
models. To translate energy into carbon emissions, these tools
will need further data such as the carbon intensity of the energy
mix during task execution. While this idea of performance
testing of actual software for estimating carbon emissions
is straightforward, there are many challenges in integrating
this into IoT testing tools so that users get answers to the
previously raised questions. This section lists and discusses
challenges we foresee for effectively integrating energy con-
sumption and carbon emissions testing into the current state
of IoT testing tools. These challenges can be a starting point
for new research in the area of IoT testing. However, this
list should not be considered final or complete. For instance,
emissions can also be associated with the production of
devices that cannot be captured by simply translating current
resource usage to power consumption and emissions.



TABLE I: Performance comparison of various ML model architectures during inference

Model Params Size Accuracy Mean Inference Time Energy Consumption
(Million) (MB) (%) (ms) (Wh per 5K images)
ResNet50 25.6 99 73 1116 373
SqueezeNet 1.25 5 52 212 51
MobileNetV2 34 14 70 143 39

TABLE II: Compute availability impact on ML inference

Mean Inference Time Mean Power Drawn

Device Cores

(ms) W)

Server 3 432 87
6 210 91

9 152 139

12 143 197

RPi 1 693 4.2
2 331 5.1

3 273 5.2

4 269 5.9

A. Configuration of Power Models

If power models are used to translate resource usage into
energy consumed, these models will need to be supplied to
IoT testing tools. Configuring appropriate power models can
quickly become a larger configuration effort for users of IoT
testing tools. This is especially true when more resources than
individual devices are to be assessed for Al services. Imagine
large-scale heterogeneous IoT deployments that span different
devices, edge and cloud resources, graphical Al accelerators,
as well as a variety of local and wide-area networking links.
Furthermore, this task becomes even more complex when
infrastructure is distributed across geographic regions.

Data points to model the power consumption of particular
resources can often be found online and in the literature. The
community could also benefit by sharing power models for
common infrastructure components in repositories. However,
the majority of these approaches neglect the power required
for housing resources. For instance, considerable energy is also
required to cool compute resources under load [26]]. Another
way to get accurate models is to measure energy consumption
on particular resources, extracting load-dependent power met-
rics of the usage of CPUs, GPUs, memory, and other resources.
A study from Google found that power/carbon calculators
overestimate calculations by not updating model parameters
(i.e., CI, PUE) [27]]. However, obtaining measurements across
large, geo-distributed IoT deployments is a costly endeavor.

Recommendation: IoT testing tools should support their
users in finding power models for IoT infrastructures, lever-
aging for instance shared repositories for common infrastruc-
ture components, while also enabling the integration of real
measurements to fine-tune power model accuracy.

B. Integration of Carbon Emissions Data

If the carbon intensity of an energy mix is used to trans-
late energy consumed into emissions, then this data must
be integrated into IoT testing tools. Some energy providers
now release production data and some even have APIs (i.e.,
data for Cyprus features a 15min granularity), while there
also commercial online services that aggregate carbon data
for many regions of the world [28]]. However, there is no

data available for all providers or regions, while schemes
for extraction and usage differ. Furthermore, this data can be
historical when testing a range of scenarios based on past com-
positions of energy mixes, or, can be a forecast, when testing
for instance scenarios based on the availability of renewable
energy within the next day. Similar to power models, this will
need to be configured with testing results dependent on these
configurations. Moreover, infrastructures might be supplied by
multiple power sources. Computing infrastructure could, for
example, be powered by on-site renewable energy sources such
as wind or solar, while also being connected to a public energy
grid. This would make it even harder to configure where
the energy for computational and communication resources is
coming from at any given time and, thus, how much emissions
are associated with any energy consumption.

Another challenge with using carbon intensity to convert
energy consumption into emissions is that this coefficient only
captures the amount of emissions of the entire energy mix:
Based on the energy mix each KWh used in the system
is associated with the same amount of C'Oseq greenhouse
gases. However, an energy mix does not really specify which
energy is used for any particular consumption. It is fully
possible that we might explore shifting larger workloads to
a time or a place with a low-carbon energy mix, believing this
will save emissions, yet in reality for this additional energy
consumption, we could end up having more power generated
from, for instance, fossil fuels like coal or gas. This is a
known issue with the metric of carbon intensity, but since
it is much harder to estimate where any particular energy is
coming from, carbon-aware computing approaches still resort
to simply using carbon intensity as their signal [29]-[31]].

Recommendation: IoT testing tools should provide a
“quick-start” carbon estimation process to quickly get novice
users results, yet also convey limitations of these calculations.
In turn, they should also support the integration of more
representative carbon intensity data for changing energy mixes.

C. Testing Trade-Offs

There are many significant trade-offs that users must de-
velop an understanding for testing Al-driven IoT applications.
One example is the trade-off to save energy by reducing the
frequency of model re-training, as well as moving model train-
ing to times when low-carbon energy is available (observa-
tion 1). However, waiting for the ideal moment to train a model
presents itself with challenges. The purpose of retraining a
model is so that changes in the data distribution, also known
as concept drift, are timely reflected in the model during
inference. Hence, finding the sweet spot between accuracy
and energy saving boils down to how long training can be
postponed without hampering accuracy.



Another significant trade-off to investigate is whether an
Al application should be moved to a location with a better
availability of low-carbon energy (observation 2). However,
there are costs in terms of time, energy, and emissions for
migration [32]. Often, Al requires large volumes of training
data, the models can have a significant size, and moving
data can incur delays. For example, the ImageNet dataset is
144GB and the time to move it over a 100Mbps link is 3.5
hours. Assessing this trade-off can be difficult as the costs of
moving data amortize only over time, but energy systems are
often highly dynamic, so it is not clear whether anticipated
benefits actually accrue. In turn, moving data across regions
is not a simple process with potential legal and privacy aspects
contradicting the benefits of in-place processing and edge
intelligence in general. Finally, another trade-off comes by
opting for the use of a lightweight model drawing considerable
energy savings (observation 3). However, saving energy must
never come at the cost of significantly degrading accuracy.

Recommendation: IoT testing tools should aid in the
assessment of trade-offs so that users can take informative
decisions. This includes finding trade-off sweet spots during
testing to avoid catastrophic results in production such as
significant overheads or accuracy degradation. To do so, testing
tools must integrate, and maybe even innovate, a variety of
benchmark measures so that users can sufficiently evaluate,
beyond model accuracy, the impact of a model on system
utilization, energy consumption and carbon footprint.

D. Selection and Execution of Test Cases

The energy footprint and carbon emissions of Al applica-
tions that run on large IoT infrastructures, powered by par-
ticular energy systems, depend on the particular applications,
infrastructures, and energy mix. Moreover, all three factors are
highly dynamic. Therefore, test results will rightly be different
depending on the time, date, and location. Workloads, mobile
infrastructures, and energy mixes change in seasonal patterns,
while there are also trends that lead to more permanent change.
This can include increasing usage of an application over time
or a shift towards more renewable energy sources in a regional
energy system. This makes it important to configure sets of
test cases that cover different possible situations.

At the same time, testing the footprint of an Al-driven
IoT application will come with its own footprint, especially
when considering multiple scenarios on large-scale emulated
infrastructures. There are strong benefits to testing software
continuously, with tests triggered on change of application
code or infrastructure definitions. Yet, if the goal is to de-
velop and operate Al services more resource-efficient and
sustainable, then testing towards this objective should not
consume large amounts of energy with considerable additional
emissions.

Recommendation: IoT testing tools should help developers
select a good set of representative scenarios over possible
times and locations, balancing the requirement to cover the
different possible situations with the goal to use few resources
to assess these scenarios. If indeed multiple variants of a basic

scenario are tested, tools should further provide feedback that
effectively generalizes from any of the specific situations.

V. RELATED WORK

The related work that could help to evaluate the energy
consumption and carbon footprint of Al-driven IoT services
falls into three categories.

Fog and edge emulators, like Fogify [24]], Mockfog [33]],
Marvis [34] or IOTier [35], enable the testing of actual
IoT software behaviour in different scenarios by shaping the
infrastructure to replicate heterogeneous edge devices and net-
works. While few fog emulators include energy consumption
estimation [10], there is currently no tool that addresses the
particular challenges of estimating energy consumption and
carbon emissions of Al-driven IoT services.

Fog and edge simulators mostly focus on the behavioral
simulation of computational and networking resources and
many, like EdgeCloudSim [36] or IOTSim [37]], do not support
energy and emission modeling. Others, like iFogSim [38]] and
PureEdgeSim [39], can simulate power utilization, but only
for system entities such as cloud and fog nodes (iFogSim) or
edge devices and their local network (PureEdgeSim). On the
other hand, LEAF [40] is a simulator that primarily focuses
on the simulation of power consumption of complete edge
and fog systems. While such fog and edge simulators can
provide valuable insights by allowing specific scenarios to be
assessed, modeling actual software using these simulators is
often difficult and requires careful configuration of simulation
parameters. Furthermore, there are no simulators that focus on
edge Al use cases or provide carbon emission estimations.

Finally, we note that there are carbon emission estimation
tools that attempt to estimate the emissions based high-level
job characteristics. Some of these estimation tools include
carbon intensity data from cloud providers [41], that allow
for the emissions estimation of compute nodes based on the
type of cloud instance, duration of usage and location of
the datacenter. Others [42] specialize on ML applications
using the energy consumption of popular GPUs as basis.
Carbontracker [43]] measures the power consumption of one or
a few training epochs to predict the total power usage of NN-
based applications. All these emission estimation tools focus
on the power consumption of computing on a few central
compute nodes, instead of distributed edge AI workloads.

VI. SUMMARY

This work presents a study of the IoT testing landscape for
energy- and carbon-aware Al-driven IoT services. With the
increasing adoption of compute-hungry Al into IoT services,
we need novel techniques that balance energy and compute
demands to achieve more resource-efficient and sustainable
IoT services. Towards this, we highlighted key questions for
developing energy-efficient and carbon-aware Al-driven IoT
services. After introducing these questions with concrete ex-
amples, we present our observations and elaborate on what we
believe must be the future directions and objectives that should
be addressed with the next generation of EdgeAl emulators



and IoT testing tools. In the future, we want to address these
directions with new methods that can be integrated by open
and popular testing suites.
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