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ABSTRACT

The size and complexity of deep neural networks continue to grow exponentially, significantly
increasing energy consumption for training and inference by these models. We introduce an open-
source package eco2AI1 to help data scientists and researchers to track energy consumption and
equivalent CO2 emissions of their models in a straightforward way. In eco2AI we put emphasis
on accuracy of energy consumption tracking and correct regional CO2 emissions accounting. We
encourage research community to search for new optimal Artificial Intelligence (AI) architectures
with a lower computational cost. The motivation also comes from the concept of AI-based green
house gases sequestrating cycle with both Sustainable AI and Green AI pathways.

Keywords ESG · Sustainable AI · Green AI · Sustainability · Ecology · Carbon footprint · CO2 emissions · GHG

1 Introduction

While the global ESG agenda (Environment, Social, and Corporate Governance) is guided by agreements established
between countries[1]), the development of ESG principles is happening through corporate, research, and academic stan-
dards. Many companies have started to develop their ESG strategies, allocating full-fledged functions and departments
dedicated to the agenda, publishing annual reports on sustainable development, providing additional funds for research,
including digital technologies and AI.

Despite growing influence of ESG agenda, it remains the problem of transparent and objective quantitative evaluation of
ESG progress in particular in environmental protection. This is of great importance for IT industry, as about one percent
of the world’s electricity is consumed by cloud computing, and its share continues to grow.[2] Artificial Intelligence
(AI) and machine learning (ML) being a big part of today’s IT industry are rapidly evolving technologies with massive
potential for disruption. There are number of ways in which AI and ML could mitigate environmental problems
and human-induced impact. In particular, they could be used to generate and process large-scale interconnected data
to learn Earth more sensitively, to predict environmental behavior in various scenarios [3]. This could improve our
understanding of environmental processes and help us to make more informed decisions. There is also a potential for AI
and ML to be used for simulating harmful activities, such as deforestation, soil erosion, flooding, increased greenhouse
gases in the atmosphere, etc. Ultimately, these technologies hold great potential to improve our understanding and
control of the environment.

A number of AI-based solutions are being developed to achieve carbon neutrality within the concept of Green AI. The
final goal of these solutions is the reduction of Green House Gases (GHG) emissions. In fact, AI can help to reduce the
effects of the climate crisis, for example, in smart grid design, developing low-emission infrastructure and modelling

1Source code for eco2AI is available at https://github.com/sb-ai-lab/Eco2AI
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climate changes.[4] However, it is also crucial to account for generated CO2 emissions while training AI models. In
fact, development of AI results into increasing computing complexity and, thereby, electrical energy consumption and
resulting equivalent carbon emissions (eq. CO2). The ecological impact of AI is a major concern that we need to account
for to be aware of eventual risks. We need to ensure ML models to be environmentally sustainable, to be optimized not
only in term of prediction accuracy, but also in terms of energy consumption and environmental impact. Therefore,
tracking the ecological impact of AI is the first step towards Sustainable AI. Clear understanding of ecological impact
from AI motivates data science community to search for optimal architectures consuming less computer resource. An
explicit call to promote research on more computationally efficient algorithms was mentioned elsewhere.[5]

To summarize the previous theses, we present the concept of AI-based GHG sequestrating cycle that describes the
relationship of AI with sustainability goals (Figure 1). The request from Sustainability towards AI spawns demand
for more optimized models in terms of energy consumption forming the path we named "Towards Sustainable AI".
On the other hand, AI creates additional opportunities for sustainability goals’ achievement, and we suggest naming
this path "Towards Green AI". To understand the role of eco2AI library in this cycle, in the right part of Figure 1 the
scheme is given with paths mentioned. First, eco2AI motivates to optimize AI technology itself. Second, if AI is aimed
to sequestrate the GHG, then the total effect should be evaluated with account for generated eq. CO2 during training
sessions at least (and during model exploitation at its best). In the frame of this article, we are constrained to examining
the path "Towards Sustainable AI" only (see examples in the Chapter "Experiments").

Figure 1: High-level schemes of AI-based GHG sequestrating. The left scheme corresponds to AI-based GHG
sequestrating cycle. The right scheme describes the role of eco2AI in this scheme

Contribution. The contribution of our paper is threefold:

• First, we introduce eco2AI, an open-source python library we have developed for evaluating equivalent CO2

emissions during training ML models.

• Second, we define the role of eco2AI within the context of AI-based GHG sequestrating cycle concept.

• Third, we describe practical cases where eco2AI plays a role of efficiency optimization tracker within the
context of fusion models learning.

The paper is organized as follows. In section 2 we review the existing solutions for CO2 assessment and describe their
difference from our library. Section 3 presents the methodology of calculations, section 4 shows the use case of the
library. Finally, in section 5 we summarize our work. The appendix section describes briefly the code usage.

2 Related work

In this chapter, we describe recent practices of CO2 emissions evaluation for AI-based models. Further on, we give a
brief description of the existing open-source packages, providing the summary of comparisons.
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2.1 Practice of AI equivalent carbon emissions tracking

Since the appearance of DL models, their complexity has been increasing exponentially, doubling number of parameters
every 3-4 months since 2012 [6] and reaching more than a trillion parameters in 2022. Among the most well known
models are BERT-Large (Oct 2018, 340M), GPT-2 (2019, 1.5B), T5 (Oct, 2019, 11B), GPT-3 (2020, 175B), Megatron
Turing (530M), Switch Transformer (2022, 1.6T).

Data accumulation, labeling, storage, processing and exploitation consumes a lot of resources during their lifespan
from production to disposal. The impact of such models is presented in descriptive visual map on a global scale using
Amazon’s infrastructure as an example.[7] Carbon emissions are only one of footprints of such an industry but their
efficient monitoring is important for passing new regulation standards and laws as well as self-regulation.[8]

Large-scale research was conducted focusing on quantifying the approximate environmental costs of DL widely used
for NLP problems.[5] Among the examined DL architecture, there were Transformer, ELMo, BERT, NAS, GPT-2.
The total power consumption was evaluated as combined GPU, CPU and DRAM consumptions, multiplied by data
center specific Power Usage Effectiveness (PUE) with default value equals 1. Sampling of CPU and GPU consumption
was being queried by the vendor specialized software interface packages: Intel Running Average Power Limit and
NVIDIA System Management, respectively. The conversion of energy to carbon emissions was generally carried out by
multiplication of total energy consumption and carbon energy intensity. The authors estimated that carbon footprint for
training BERT (base) was about 652 kg that is comparable to the footprint of the "New York <-> San Francisco" air
travel per passenger.

The energy consumption and carbon footprint for the following NLP models was estimated : T5, Meena, GShard,
Switch Transformer, GPT-3.[9] The key outcome resulted in opportunities to improve energy efficiency while training
neural network models: sparsely activating DL; distillation techniques [10]; pruning, quantization, efficient coding [11];
fine-tuning and transfer-learning [12]; large models training in a specific region with low energy mix, exploiting cloud
data centers optimized in terms of energy consumption. The authors advocated for reducing the carbon footprint by
102-103 times if the mentioned suggestions had been taken into account.

2.2 Review of open-source emission trackers

A list of libraries have been developed to track the AI equivalent carbon footprint. Here we are focusing on describing
the most widespread open-source libraries. They all have a common key goal: to monitor CO2 emissions during training
models (see Table 1). Having much in common with recent analogs, in eco2AI we focused on the following: taking into
account only those system processes that are related directly to models training (to avoid over-estimation); extensive
and constantly updated database of regional emission coefficients (365 territorial objects are included) and information
on CPU devices (3278 models).

Cloud Carbon Footprint2 is an application that estimations the energy and carbon emissions of public cloud provider
utilization. It measures cloud carbon and is intended to connect with various cloud service providers. It provides
estimates for both energy and carbon emissions for all types of cloud usage, including embodied emissions from
production, with the opportunity to drill down into emissions by cloud provider, account, service, and time period. It
provides real recommendations for AWS and Google Cloud to save money and minimize carbon emissions, as well
as forecasting cost savings and actual outcomes in the form of trees planted. For hyperscale data centers, it measures
consumption at the service level using real server utilization rather than average server utilization. It provides a number
of approaches for incorporating energy and carbon indicators into existing consumption and billing data sets, data
pipelines, and monitoring systems.

CodeCarbon3 is a Python package for tracking the carbon emissions produced by various kinds of computer programs,
from straightforward algorithms to deep neural networks. By taking into account the computing infrastructure, location,
usage and running time, CodeCarbon provides an estimate of how much CO2 was produced, and gives comparisons
with common modes of transportation to give an idea about scope within an order of magnitude.

Carbontracker4 is a tool to track and predict the energy consumption and carbon footprint of training DL models. The
package allows for a further proactive and intervention-driven approach to reducing carbon emissions by supporting
predictions. Model training can be stopped at the user’s discretion if the predicted environmental cost is exceeded.
Authors support a variety of different environments and platforms such as clusters, desktop computers, and Google
Colab notebooks, allowing for a plug-and-play experience. [13]

2https://github.com/cloud-carbon-footprint/cloud-carbon-footprint
3https://github.com/mlco2/codecarbon
4https://github.com/lfwa/carbontracker
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Table 1: Features of open-source trackers for equivalent CO2 emission evaluation of machine learning models

Library Cloud
Carbon
Footprint

Code
Carbon

Carbon
Tracker

Experimental
Impact
Tracker

Tracarbon Green
Algo-
rithms

eco2AI

General information
Launch date 2020 2020 2020 2019 2022 2021 2022
License type Apache 2.0 MIT MIT MIT Apache 2.0 CC-BY-4.0 Apache 2.0

Carbon intensity X X Undefined X X X X
∗

OS compatibility
Linux X X X X X X

Windows X X X X X

MacOS X X X X X X X

Hardware compatibility
RAM X X X X X X

CPU X X Undefined X X X X
∗∗

GPU X X X X X X X

Supplementary
Data encryption∗∗∗

X

WEB interface X X X

∗ account for 365 territorial objects including regional data for Australia[15, 16], Canada[15, 17], Russia[18, 19] and USA[15, 20]
∗∗ eco2AI database includes data on 3278 models of CPU for Intel and AMD
∗∗∗ beneficial in scenarios where the authenticity of results is required

Experiment impact tracker5 is a framework providing information of energy, computational and carbon impacts of
ML models. It includes the following features: extraction of CPU and GPU hardware information, setting experiment
start and end-times, accounting for the energy grid region where the experiment is being run (based on IP address), the
average carbon intensity in the energy grid region, memory usage, the real-time CPU frequency (in Hz).[8]

Green Algorithms6 is online tool that enables a user to estimate and report the carbon footprint from computation. It
integrates with computational processes and does not interfere with the existing code, while also accounting for a range
of CPUs, GPUs, cloud computing, local servers and desktop computers.[14]

Tracarbon7 is a Python library that tracks energy consumption of the device and calculates carbon emissions. It detects
the location and the device model automatically and can be used as a command line interface (CLI) with predefined or
calculated with the API (Application Programming Interface) user metrics.

3 Methododology

The methodology covers the following: calculation of electric energy consumption, extracting of emission intensity
coefficient and conversion to equivalent CO2 emissions. Each part is described below.

3.1 Electric energy consumption

The energy consumption of the system can be measured in Joules (J) or kilowatt-hours (kWh) - unit of energy equal to
one kilowatt of power sustained for one hour. The task is to evaluate energy contribution for each hardware unit.[8] We
focused on the GPU, CPU and RAM energy evaluation for their direct and most significant impact on the ML processes.
While examining CPU and GPU energy consumption we aware of importance of tracking terminating processes but we
neglect those tail effect for its relatively small impact to the total energy consumption. The storage (SSD, HDD) is also
an energy consuming process but we do not take it into account as it has lack of direct relationship with running process
(it is rather an issue of permanent data storage process).

GPU. The eco2AI library is able to detect NVIDIA devices. A Python interface for GPU management and monitoring
functions was implemented within the Pynvml library. This is a wrapper for the NVIDIA Management Library which
detects most of NVIDIA GPU devices and tracks the number of active devices, names, memory used, temperatures,
power limits and power consumption of every detected device. Correct functionality of the library requires CUDA

5https://github.com/Breakend/experiment-impact-tracker
6https://github.com/GreenAlgorithms/green-algorithms-tool
7https://github.com/fvaleye/tracarbon
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installation on a computing machine. The total energy consumption of all active GPU devices EGPU (kWh) equals to

product of power consumption of GPU device and its loading time: EGPU =
∫ T

0
PGPU (t)dt, where PGPU is total

power consumption of all GPU devices defined by Pynvml (kW), T is GPU devices loading time (h). If the tracker does
not detect any GPU device, then GPU power consumption is set equal to zero.

CPU. The python modules os and psutil were used to monitor CPU energy consumption. To avoid overestimation,
eco2AI takes into account the current process running in the system related only to model training. Thereby, the tracker
takes percentage of CPU utilization and divides it by number of CPU cores, obtaining CPU utilization percent. We
realized currently the most comprehensive database containing 3279 unique processors for Intel and AMD models. For
each CPU model name provided thermal design power (TDP) which is equivalent power consumption at long-term
loadings. The total energy consumption of all active CPU devices ECPU (kWh) is calculated as a product of the power

consumption of the CPU devices and its loading time ECPU = TDP
∫ T

0
WCPU (t)dt, where TDP is equivalent CPU

model specific power consumption at long-term loading (kW), WCPU is the total loading of all processors (fraction). If
the tracker can not match any CPU device, the CPU power consumption is set to constant value equal to 100 W[21].

RAM. Dynamic random access memory devices is important source of energy consumption in modern computing
systems especially when significant amount data should be allocated or processed. However, accounting of RAM
energy consumption is problematic as its power consumption is strongly depends if data is read, written or maintained.
In eco2AI RAM power consumption is considered proportional to amount of allocated power by current running

process calculated as follows: ERAM = 0.375
∫ T

0
MRAMi

(t)dt, where ERAM - power consumption of all allocated
RAM (kWh), MRAMi

is allocated memory (GB) measured via psutil and 0.375 W/Gb is estimated specific energy
consumption of DDR3, DDR4 modules[21].

3.2 Emission intensity

There is variation in emissions among countries due to different factors, such as climate change, geographical position,
economic development, fuel use and technological advancement. To account for regional dependence we use the
emission intensity coefficient γ that is a weight in kilogram of emitted CO2 per each megawatt-hour (MWh) of electricity
generated by the particular power sector of the country. The emission intensity coefficient is totally defined by regional
energy mix, or γ =

∑
i
fiei, where i is an index related to the i-th energy source (e.g. coal, renewable, petroleum, gas,

etc.), fi is a fraction of the i-th energy source for specific region, ei is its emission intensity coefficient. Consequently,
the higher fraction of renewable energy is, the less the total emission intensity coefficient we expect. In the opposite
case, high fraction of hydrocarbon energy resources implies a higher value of emission intensity coefficient. Thereby,
the emission intensity varies significantly depending on the regional allocation (see Table 2).

Table 2: Emission intensity coefficients for selected regions

Country ISO-Alpha-2
code

ISO-Alpha-3
code

UN M49 code Emission
coefficient,
kg/MWh

Canada CA CAN 124 120.49
France FR FRA 250 67.53
India IN IND 356 625.57
Paraguay PY PRY 600 23.92
Zambia ZM ZMB 894 120.78

The eco2AI library includes permanently enriched and maintained database of emission intensity coefficients for
365 regions based on the public available data in 209 countries[22] and also regional data for such countries as
Australia[15, 16], Canada[15, 17], Russia[18, 19, 23] and the USA[15, 20]. Currently, this is the largest database
among the trackers reviewed, which allows to enrich the higher precision of energy consumption estimations.

The database contains the following data: country name, ISO-Alpha-2 code, ISO-Alpha-3 code, UN M49 code and
emission coefficient value. As an example, the data for selected regions is presented in Table 2. The eco2AI library
automatically defines a user calculation facility country by IP and extracts its emission intensity coefficient. If the
coefficient is not extracted for some reason, it is set to 436.5 kg/MWh, which is global average.[22]

3.3 Equivalent carbon emissions

Finally, the total equivalent emission value as an AI carbon footprint CF (kg) generated during models learning is
defined by multiplication of total power consumption from CPU, GPU and RAM by emission intensity coefficient γ
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(kg/kWh) and PUE coefficient: CF = γ ·PUE ·(ECPU +EGPU +ERAM ). Here, PUE is power usage effectiveness
of data center required if the learning process is run on cloud. PUE is the optional parameter with default value 1. It is
defined manually in the eco2AI library.

4 Experiments

In the current chapter, we present experiments of tracking equivalent CO2 emissions using eco2AI while training of
Malevich (ruDALL-E XL 1.3B) [24] and Kandinsky (ruDALL-E XXL 12B)8 models. Malevich and Kandinsky are
large multimodal models[25] with 1.3 billion and 12 billion parameters correspondingly capable of generating arbitrary
images from a russian text prompt that describes the desired result.

We present results for fine-tuning Malevich and Kandinsky on the Emojis dataset[26] and for training of Malevich with
optimised variation of GELU[27] activation function. Training of the last mentioned version of Malevich allows us to
consume about 10% less power and, consequently, produce less equivalent CO2 emissions.

4.1 Fine-tuning of multimodal models

In this section we present eco2AI use cases for monitoring fine-tuning of Malevich and Kandinsky models characteristics
(e.g., CO2, kg; power, kWh) on the Emojis dataset. Malevich and Kandinsky are multi-modal pre-trained transformers
that learn the conditional distribution of images with by some string of text. More precisely, they autoregressively
model the text and image tokens as a single stream of data (see, e.g., DALL-E [28]). These models are transformer
decoders [29] with 24 and 64 layers, 16 and 60 attention heads, 2048 and 3840 hidden dimensions, respectively, and
standard GELU nonlinearity. Both Malevich and Kandinsky work with 128 text tokens, which are generated from
the text input using YTTM tokenizer9, and 1024 image tokens, which are obtained encoding the input image using
generative adversarial network Sber-VQGAN encoder part10 (it is pretrained VQGAN [30] with Gumbel Softmax
Relaxation [31]). The dataset of Emojis11 for fine-tuning contains 2749 unique emoji icons and 1611 unique texts that
were collected by web scrapping (the difference in quantities is due to the fact that there are sets, within which emojis
differ only in color, moreover, some elements are homonyms).

Table 3: Carbon emissions and power consumption of the fine-tuning of Malevich and Kandinsky models

Model Train time Power, kWh CO2, kg GPU CPU Batch Size

Malevich 4h 19m 1.37 0.33 A100
Graphics, 1

AMD
EPYC 7742
64-Core

4

Kandinsky 9h 45m 24.50 5.89 A100
Graphics, 8

AMD
EPYC 7742
64-Core

12

Malevich and Kandinsky were trained in fp16 and fp32 precision correspondingly. Adam (8-bit) [32] is used for
optimization in both experiments. This realization reduces the amount of GPU memory required for gradient statistics.
One cycle learning rate is chosen as a scheduler with the following parameters: start learning rate (lr) 4 · 10−7, max
lr 10−5, final lr 2 · 10−8. Models fine-tuned for 40 epochs with warmup 0.1, gradient clipping 1.0, batch size 4 for
Malevich and batch size 12 for Kandinsky, with large image loss coefficient 1000 and with frozen feed forward and
attention layers. Malevich and Kandinsky model were trained at 1 GPU Tesla A100 (16 GB) and 8 GPU Tesla A100
(80 Gb), respectively. It is worth mentioning that distributed model training optimizer DeepSpeed ZeRO-3 [33] was
used to train Kandinsky model. The source code used for fine-tuning of Malevich is available in Kaggle12. Summary of
fine-tuning parameters, energy consumption results ans eq. CO2 is given in (Table 3). One can note that fine-tuning of
Kandinsky consume more than 17 times more than Malevich.

We have named the results of Malevich and Kandinsky fine-tuning as Emojich XL and Emojich XXL respectively. We
compare the results of generation by Malevich vs by Emojich XL and by Kandinsky vs by Emojich XXL on some text
inputs (see Figures 2 and 3) to assess visually the quality of fine-tuning (how the style of generated images is adjusted
to the style of emojis).

8https://github.com/sberbank-ai/ru-dalle
9https://github.com/VKCOM/YouTokenToMe

10https://github.com/sberbank-ai/sber-vq-gan
11https://www.kaggle.com/datasets/shonenkov/russian-emoji
12https://www.kaggle.com/shonenkov/emojich-rudall-e
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The image generation starts with a text prompt that describes the desired content. When the tokenized text is fed to
Emojich, the model generates the remaining image tokens auto-regressively. Every image token is selected item-by-item
from a predicted multinomial probability distribution over the image latent vectors using nucleus top-p and top-k
sampling with a temperature [34] as a decoding strategy. The image is rendered from the generated sequence of latent
vectors by the decoder part of the Sber-VQGAN.

All examples below are generated automatically with the following hyper-parameters: batch size 16 and 6, top-k
2048 and 768, top-p 0.995 and 0.99, temperature 1.0, 1 GPU Tesla A100 for Malevich (as well as Emojich XL) and
Kandinsky (as well as Emojich XXL), respectively.

Figure 2: Images generaton of Malevich (top) vs Emojich XL (bottom) by text input ”Tree in the form of a neuron”

Figure 3: Images generation of Kandinsky (top) vs Emojich XXL (bottom) by text input ”Green Artificial Intelligence”

Thus, one can see the eco2AI library makes it straightforward to control the energy consumption while training (and
fine-tuning) large models not only on one GPU, but also on multiple GPUs, which is essential in case of using of
optimisation libraries for distributed training, for example DeepSpeed ZeRO-3.

4.2 Pre-training of multimodal models

Figure 4: Optimized 4-bit piecewise-constant
approximation of the derivative of the GELU
activation function.

Training large models like Malevich is highly resource demanding
task. In this section we give an example of improvement its energy
efficiency referring to low precision computing using 4-bit GELU
activation functon as example. More precisely, we compare training
of version of Malevich with regular GELU and version of Malevich
with GELU 4-bit using eco2AI library.

GELU 4-bit [35] is variation of GELU [27] activation function that
saves model gradients with 4-bit resolution thus allocating less GPU
memory and spending less computational resources (see Figure 4).
Here we present the comparison of loss and energy efficiency Male-
vich model with integrated GELU and GELU 4-bit activation func-
tions. We used the same optimizer, scheduler and training strategy
as in fine-tuning experiments. To rule out randomness, we fixed seed
equls to 6965. Training dataset was consisted of 250000 samples
(pairs of images and corresponding description in natural language
that was balanced over the following 15 domains: animal, nature,
city, indoor, person, food, vehicle, device, tool, accessory, product,
clothes, sport, art, other). Each sample was passed through the model only once with batch size 4. Validation dataset
was consisted of 5000 samples (pairs of images and text that have been balanced over the same domains). eco2AI
library was used to track the carbon footprint during the training in real time.

7
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As we can see in Figure 5(a) validation losses of Malevich with GELU 4-bit and Malevich with regular GELU are
almost the same. But GELU 4-bit is more efficient accumulating less CO2 emissions at the same training step Figure
5(b) or achieved model loss Figure 5(c).

Figure 5: The comparison of GELU and GELU 4-bit activation functions integrated to Malevich model: (a) Validation
loss at every step of pre-training, (b) Accumulated CO2 at every step of models pre-training, (c) Accumulated CO2 for
achieved validation loss of each model (the inset depicts the difference of accumulated CO2 between models)

As one can see in the Table 4 GELU 4-bit allows us to consume about 10% less power and, consequently, produce less
equivalent CO2 emissions.

Table 4: Carbon emissions and power consumption of the pre-trained Malevich model on 250000 dataset during 1
epoch

Model Train time Power, kWh CO2, kg GPU CPU Valid Loss

Malevich 15h 23m 5.51 1.33 A100
Graphics, 1

AMD
EPYC 7742
64-Core

5.24

Malevich,
GELU 4-bit

14h 5m 4.99 1.20 A100
Graphics, 1

AMD
EPYC 7742
64-Core

5.24

Thus, the eco2AI library can monitor the power consumption and carbon footprint of training models in real time, helps
to implement and demonstrate various memory and power optimization algorithms (such as quantization of gradients of
activation functions).

5 Conclusions

Despite the great potential of AI to solve environmental issues, AI itself can be the source of indirect carbon footprint.
In order to help AI-community to understand the environmental impact of AI models during training and inference and
to systematically monitor equivalent carbon emissions in the this paper we introduced the tool eco2AI. The eco2AI is an
open-source library capable to track equivalent carbon emissions while training or inferring python-based AI models
accounting for energy consumption of CPU, GPU, RAM devices. In eco2AI we put emphasis on accuracy of energy
consumption tracking and correct regional CO2 emissions accounting due to precise measurement of process loading,
extensive database of regional emission coefficients and CPU devices.

We present examples of eco2AI usage for tracking fine-tuning of big text2image models Malevich and Kandinsky
and also for optimisation of GELU activation function integrated to Malevich model. With the help of eco2AI we
demonstrated that usage of 4-bit GELU decreased equivalent CO2 emissions by about 10%. We expect that eco2AI
could help the ML community to pace to Green an Sustainable AI within the presented concept of AI-based GHG
sequestrating cycle.
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Appendix. Usage of eco2AI library

The eco2AI library is available as Python package. It is open-source, distributed under under the Apache 2.0 license13

and available for download and installation from PyPI 14 and one can also find its source-code on GitHub 15.

Once it is installed and imported into Python session, it will require to add start and stop code lines to frame the tracking
session.

Listing 1: Code integration

import e c o 2 a i

t r a c k e r = e c o 2 a i . T r a c k e r ( p r o j e c t _ n a m e =" YourProjec tName " ,
e x p e r i m e n t _ d e s c r i p t i o n =" t r a i n i n g _ t h e _ <your_model >_model " )

t r a c k e r . s t a r t ( )
<your gpu & ( or ) cpu c a l c u l a t i o n s >
t r a c k e r . s t o p ( )

Another way to start working with the tracker is to use decorators. It allows marking any function and writing emission
information in "emission.csv" file every time when it is executed.

Listing 2: using decorators

from e c o 2 a i import t r a c k

@track
def t r a i n _ f u n c ( model , d a t a s e t , o p t i m i z e r , epochs ) :

. . .
t r a i n _ f u n c ( your_model , y o u r _ d a t a s e t , y o u r _ o p t i m i z e r , you r_epochs )

After the end of the session, all the results will be recorded in a local file "emission.csv" or another name set by user.
This file includes the following data: Project name (customized by user), Experiment description (customized by user),
Start time (yyyy-mm-dd hh:mm:ss), Duration (sec), Power consumption (kWh), CO2 emission (kg), CPU name, GPU
name, OS, Country.

The eco2AI allows users to record information about training sessions in encrypted form as an extra function. This
functionality is beneficial in scenarios where the authenticity of results is required. It is need to use the tracker property
"encode" to enable output encryption.

Listing 3: using encrypted mode

import e c o 2 a i

t r a c k e r = e c o 2 a i . T r a c k e r (
f i l e _ n a m e = ’ e n c o d e d _ e m i s s i o n s . c sv ’ ,
p r o j e c t _ n a m e =" T e s t_ 1 " ,
e x p e r i m e n t _ d e s c r i p t i o n =" t e s t i n g _ E c o 2 A I _ i n _ e n c o d i n g _ m o d e " ,
encode =True ,

)

For users convenience, the eco2AI implements the summary function. It aggregates information in the .csv file by the
"project name" column. If user defines the kWh_price argument, information about financial costs for each of the
projects will be additionally calculated based on the duration time and price information provided by the user.

Listing 4: using summary function

e c o 2 a i . summary ( ’ e m i s s i o n . csv ’ , kwh_pr ice = 0 . 1 1 7 )

13https://www.apache.org/licenses/LICENSE-2.0
14https://pypi.org/project/eco2AI/
15https://github.com/sb-ai-lab/eco2AI
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