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Abstract 

Artificial intelligence and machine learning are increasingly used for forecasting, optimization, 
and policy design in the energy sector, yet no standardized framework exists to evaluate whether 
these systems reason correctly. Current validation practices focus on predictive accuracy or 
computational efficiency, leaving the logical integrity of analytical conclusions untested. This 
study introduces the Analytical-Reliability Benchmark (ARB), a reproducible framework that 
quantifies reasoning reliability in large-language models (LLMs) applied to energy-system 
analysis. The benchmark integrates five sub-metrics accuracy, reasoning reliability, uncertainty 
discipline, policy consistency, and transparency and evaluates model performance across 
deterministic, probabilistic, and epistemic scenarios using open techno-economic datasets (NREL 
ATB 2024, DOE H₂A/H₂New, IEA WEO 2024). Four frontier models (GPT-4 / 5, Claude 4.5 
Sonnet, Gemini 2.5 Pro, Llama 3 70 B) were tested under identical factual and regulatory 
conditions. Results show that reasoning reliability can be objectively measured: GPT-4 / 5 and 
Claude 4.5 Sonnet achieved consistent and policy-compliant reasoning (Analytical Reliability 
Index > 90), Gemini 2.5 Pro demonstrated moderate stability, and Llama 3 70 B remained below 
professional thresholds. Statistical validation confirmed that these differences are significant and 
reproducible. The ARB establishes the first quantitative method in the energy literature for 
verifying causal, probabilistic, and policy-driven reasoning in AI systems, providing a reference 
framework for trustworthy and transparent analytical applications in the global energy transition 
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1. Introduction 

Artificial intelligence (AI) and machine learning (ML) are increasingly embedded in analytical 
workflows across science, engineering, and finance. Machine-learning algorithms derive 
predictive relationships directly from data, while large language models (LLMs) transformer 
architectures trained on trillions of words extend this paradigm by performing generalized 
reasoning and text-based computation. Their capacity to synthesize information across 
heterogeneous sources has accelerated adoption in fields ranging from medicine to materials 
science [1, 2]. Yet, their performance on domain-specific reasoning tasks where correctness 
depends on quantitative logic, physical constraints, and regulatory rules remains largely 
unverified. 

In the energy industry, the use of AI has expanded far beyond forecasting. Models now generate 
investment valuations, carbon abatement curves, and hydrogen cost projections, often with billions 
of dollars in policy or infrastructure decisions resting on their outputs. Energy consultancies, 
corporate analytics teams, and financial institutions are deploying general-purpose LLMs to draft 
techno-economic scenarios and to estimate figures such as “global hydrogen capacity by 2035” or 
“trillion-dollar transition costs.” These numbers circulate widely in policy and investor reports but 
are seldom traceable to verifiable datasets or transparent reasoning chains. Unlike structured 
simulation tools, generative models can produce plausible but unfounded numerical outputs a 
phenomenon analogous to “hallucination” in text generation which poses serious risk when such 
estimates are interpreted as quantitative evidence. The absence of standardized verification 
frameworks means that errors in cost, emissions, or market projections may propagate unchecked 
through policy and investment planning. 

In other high-impact sectors, evaluation protocols have evolved precisely to prevent such failures. 
McCarthy et al. (2025) proposed a practical framework for assessing AI imaging models in 
medicine, emphasizing transparent data provenance, external validation, and interpretability as 
prerequisites for clinical adoption [13]. Woelfle et al. (2024) extended these principles to reasoning 
tasks, benchmarking five LLMs on structured evidence-appraisal instruments (PRISMA, 
AMSTAR, PRECIS-2) and showing that while individual models underperformed experts, 
human–AI collaboration under controlled conditions achieved expert-level reliability [14]. 
Together these studies illustrate that domain-specific benchmarking grounded in reproducible data 
and explicit task definitions is essential before AI results can be trusted in professional decision 
contexts. 

Recent scholarship on AI [23] evaluation argues that benchmarks must move beyond leaderboards 
toward multi-metric benchmark suites capturing complementary dimensions of performance [15]. 
Wang et al. (2024) emphasize that a single numerical score cannot represent fairness, context, or 
reliability, and that responsible benchmarking requires coverage of multiple modalities and harms. 
The same logic applies to energy analytics: an LLM’s numerical precision, causal coherence, 
uncertainty calibration, and policy compliance are distinct attributes that together define analytical 



reliability. Evaluating only prediction accuracy typical of existing energy-AI work ignores these 
interdependencies and offers a false sense of competence. 

Energy research itself is entering an era of AI-driven automation. ML models are now central to 
renewable forecasting [16], demand prediction [17], and materials discovery [18]. Several studies 
report LLM-based automation of techno-economic reports and carbon-accounting summaries [19, 
20]. However, no one establishes quantitative reliability standards analogous to CONSORT-AI in 
medicine or ISO-validated protocols in engineering. Benchmarking efforts in energy currently 
focus on efficiency or emission reduction, not on the reasoning integrity of AI systems generating 
those figures. As a result, major publications and investment analyses routinely cite AI-generated 
estimates hydrogen production reaching “hundreds of millions t yr⁻¹” or transition costs 
“exceeding USD 10 trillion” without reproducible evidence trails. These projections shape market 
sentiment, regulatory design, and public finance despite lacking verifiable computational 
grounding. 

The problem is therefore not the presence of AI but the absence of benchmarks that test analytical 
reasoning. A reliable benchmark must expose how models handle deterministic calculation, 
probabilistic uncertainty, and epistemic robustness identifying when reasoning breaks down. 
Borrowing from developments in medicine [13], metascience [14], and fairness research [15], this 
study introduces a benchmark for analytical reliability in energy-system reasoning. Hydrogen 
economics serves as the test domain because it integrates physical, financial, and policy variables 
and exemplifies the sector’s data-driven complexity. The benchmark [21,23] evaluates frontier 
LLMs under identical factual and regulatory conditions, producing reproducible comparisons of 
their ability to perform consistent, policy-compliant analysis. By quantifying reasoning stability 
rather than superficial accuracy, the framework establishes a foundation for transparent, 
accountable use of AI in the global energy transition. 

 

 

 

 

 

 

 

 

 

 



2. Current state of AI adoption and benchmarking needs in the energy industry 

Artificial intelligence now influences nearly every layer of the global energy value chain. Machine-
learning systems are used in forecasting, optimization, asset management, and policy modelling. 
In power systems, ML supports short-term load and renewable generation forecasting, fault 
detection, and grid-stability control. In oil, gas, and hydrogen infrastructure, deep-learning models 
are applied to predictive maintenance, corrosion mapping, and process optimization. 
Reinforcement-learning and meta-heuristic algorithms assist in scheduling, unit commitment, and 
energy-market bidding strategies. More recently, large-language models (LLMs) have entered 
engineering and policy analysis workflows, automatically generating techno-economic 
assessments, sustainability reports, and regulatory summaries. These developments have created a 
paradigm where quantitative reasoning is often delegated to opaque systems with limited 
explainability or validation. 

Despite this proliferation, no integrated benchmarking framework exists for analytical reliability 
in the energy domain. Current validation practices remain fragmented. Forecasting competitions 
(such as GEFCom) assess accuracy on statistical metrics like RMSE or MAPE; optimization 
models are validated through scenario convergence or cost-minimization checks; and policy 
simulators are benchmarked only on computational speed [24,25]. None of these methods verify 
whether the reasoning process itself is how the model connects physical inputs, techno-economic 
logic, and policy [26] constraints is sound. In contrast, fields such as healthcare and biomedicine 
now employ structured frameworks such as CONSORT-AI and PRISMA-AI to evaluate model 
reasoning and decision integrity [13]. The energy industry continues [28] to rely on ad-hoc 
comparisons, vendor white papers, and proprietary metrics, leaving no transparent path to measure 
consistency, uncertainty discipline, or regulatory compliance in AI-driven analyses. 

A major cause of this gap is the heterogeneity of data and objectives in energy systems. Data 
streams vary from high-frequency grid telemetry to multi-decadal climate or price projections, 
each with distinct noise patterns, uncertainty horizons, and causal relationships. Physical processes 
(generation, conversion, storage, distribution) are coupled with financial and policy layers 
(CAPEX, OPEX, taxes, credits, permits) [27,28]. When these variables interact, simple prediction 
accuracy is insufficient; reliable reasoning requires that the AI maintain internal consistency across 
dimensions that are physical (mass-energy balance), economic (discounted cash flow), and 
regulatory (eligibility thresholds). Existing ML benchmarks [29] do not test such cross-domain 
reasoning. They focus on narrow tasks and ignore whether outputs violate thermodynamic limits, 
market equilibrium, or legal definitions fundamental to real-world energy planning [30]. 

The risk of fabricated or unjustified outputs has already materialized. Several energy-consulting 
reports and investor briefings have quoted AI-generated estimates of hydrogen production 
capacity, transition costs, or carbon-capture potential in the trillions of dollars, with no traceable 
data lineage. Generative systems, when queried for techno-economic indicators such as levelized 
cost of hydrogen (LCOH) [28] or emissions intensity, can generate plausible numbers without 



referencing actual models or datasets [14]. Because these outputs are formatted convincingly, they 
circulate through media and policy discussions without scrutiny. The absence of verifiable 
benchmarks allows this misinformation to propagate, potentially affecting real investment and 
regulatory decisions. Figure 2.1 summarizes the analytical workflow typical of modern energy-
system evaluation and indicates where the proposed Analytical-Reliability Benchmark operates. 
The figure shows a horizontal reasoning chain beginning with raw energy and market data, 
proceeding through techno-economic and cost–emission modelling, integrating policy 
frameworks, and culminating in investment or siting analysis. The benchmark acts as a continuous 
evaluation band beneath all stages, assessing reasoning coherence, uncertainty handling, and rule 
compliance. It ensures that AI systems not only compute results but also follow logically valid, 
policy-consistent reasoning pathways. 

 

Figure 2.1: Integration of the Analytical-Reliability Benchmark into the energy-system reasoning workflow. The benchmark layer evaluates 
reasoning consistency, uncertainty discipline, and policy compliance across all modelling stages. Data sources include NREL ATB 2024, DOE 
H₂A/H₂New, and IEA WEO 2024 [3–5]; regulatory frameworks correspond to §45V IRA, RED III, and CBAM [6–8]; conceptual structure 
adapted from multidimensional AI-benchmark principles [13–15, 28]. 

At the model level, the AI landscape remains dominated by a small number of high-capacity LLMs. 
As of 2025, roughly twenty commercial or open-source models provide full-scale reasoning and 
coding capabilities. Proprietary examples include OpenAI GPT-4 / 5, Anthropic Claude 4.5 
(Sonnet), and Google Gemini 2.5 Pro; principal open-source alternatives include Meta Llama 3, 
Mistral Mixtral-8×22B, Falcon, and Vicuna [16–18, 23]. Proprietary systems generally achieve 
stronger coherence and factual reliability due to curated training data and reinforcement-learning 
pipelines, but they restrict transparency and independent reproducibility. Open-source models 
offer inspectable architectures and lower inference costs yet remain unstable when exposed to 
multi-variable or policy-logic perturbations. Benchmarking research in other domains confirms 
that, when evaluated under standardized protocols, open-source models such as Mixtral-8×22B 
can approach or surpass earlier proprietary systems on structured reasoning tasks [15–17]. 
However, no equivalent, domain-grounded comparison exists for the energy industry. 



To balance technical representativeness, accessibility, and diversity of design, the present study 
evaluates four frontier LLMs: GPT-4 / 5, Claude 4.5 (Sonnet), Gemini 2.5 Pro, and Llama 3 70 B. 
These models were selected for three reasons. First, they encompass both proprietary and open-
source paradigms, allowing comparison of transparency versus controlled performance. Second, 
they span the most advanced reasoning architectures available to date, including multimodal and 
chain-of-thought inference. Third, their combined market share and technical maturity make them 
representative of the AI systems currently influencing analytical and policy work in the energy 
sector. Section 3 details how these models were exposed to identical factual, numerical, and policy 
conditions to quantify analytical reliability through deterministic, probabilistic, and epistemic 
evaluation. 

3. Methodology 

3.1 Rationale and experimental philosophy 

The objective of this work is to construct a rigorous, reproducible benchmark to evaluate how 
large-language models (LLMs) perform analytical reasoning in energy-system economics, with 
hydrogen serving as the representative sector. Hydrogen economics combines physical causality 
(efficiency, electricity use, storage losses), financial parameters (CAPEX, OPEX, discounting), 
and regulatory frameworks (carbon pricing, production credits, renewable-matching rules). This 
interaction of physical, financial, and policy variables provides a natural stress-test for reasoning 
systems because correct conclusions require simultaneous mastery of quantitative logic, causal 
inference, and compliance reasoning. 

Traditional NLP benchmarks measure recall or linguistic fluency, but they do not reveal whether 
a model can trace cause-and-effect chains or apply policy logic [1, 2]. The present framework 
therefore treats reasoning as a controlled experiment: each model receives identical scenarios, 
phrased in the same language, built from open data, and scored by predefined rules. This removes 
confounding effects of wording or subjective evaluation and isolates differences in reasoning 
behavior. 

Each scenario, or case, functions as an independent experiment. The benchmark arranges eight 
cases along a ladder of difficulty corresponding to how a human analyst approaches problems from 
single-variable sensitivities to integrated multi-policy assessments and epistemic validation under 
misinformation. Collectively, these cases measure what we term analytical reliability, the ability 
of a model to generate internally consistent, policy-compliant, and verifiable conclusions. 

3.2 Data foundation and scenario construction 

All scenarios are grounded in peer-reviewed techno-economic datasets, allowing every parameter 
to be traced to a public source. Baseline costs and performance values for solar, wind, and storage 
technologies come from the NREL Annual Technology Baseline 2024 [3]; electrolyzers and 
hydrogen-logistics parameters from the U.S. DOE H2A and H2New models [4]; and long-term 



fuel and carbon-price trajectories from the IEA World Energy Outlook 2024 [5]. These data form 
the quantitative environment and the reference world within which all models are evaluated. 

The reference world represents plausible 2030–2035 transition conditions: constant 2024 USD, a 
weighted-average cost of capital (WACC) of 7 %, and a 20-year project lifetime. Policy 
assumptions reproduce three globally influential frameworks: the Inflation Reduction Act (IRA) 
clean-hydrogen production credit (§ 45V) in the United States, the EU Renewable Energy 
Directive (RED III) hourly-matching requirement, and the EU Carbon Border Adjustment 
Mechanism (CBAM) [6–8]. 

Each case modifies only the subset of variables required to test the targeted reasoning behavior, 
keeping all others constant. Deterministic cases vary a single driver (e.g., electricity price), 
ambiguity cases vary two in opposition, policy cases toggle eligibility conditions, uncertainty cases 
impose volatility bands, multi-variable cases combine up to nine shocks, and bias-robustness cases 
insert false or pressured premises. This separation between fixed context and perturbations ensures 
that each task has an expected outcome a priori and can be scored objectively. 

3.3 Benchmark structure and case selection 

The benchmark comprises eight cases designed to capture the spectrum of reasoning required in 
techno-economic analysis. The first two address quantitative reasoning; the next three examine 
policy, uncertainty, and system integration; the sixth and seventh extend to compound and 
linguistic robustness; and the eighth adds epistemic validation against misinformation. 

 

Case Analytical focus Principal variables or rules tested Evaluation objective 

1 – Deterministic baseline First-order sensitivity 
Single variable (electricity price, efficiency, 
CAPEX) 

Verify basic causal sign and 
proportionality. 

2 – Ambiguity / trade-off Opposing drivers CAPEX ↑ vs OPEX ↓; efficiency ↑ vs price ↑ 
Assess identification of dominant 
driver and reasoning clarity. 

3 – Policy reasoning 
Regulatory 
application 

§45V credit, RED III matching, CBAM levy 
Evaluate comprehension and correct 
application of policy rules. 

4 – Uncertainty 
management 

Probabilistic 
discipline 

Forecast intervals, missing data 
Measure calibration (coverage × [1 – 
width]) and abstention behavior. 

5 – Integrated techno-
economic chain 

Systemic reasoning Production → storage → transport (+ policy) 
Test cross-module coherence and 
boundary discipline. 

6 – Multi-variable shock Compound causality 

Nine drivers (fuel, carbon, WACC, CAPEX, 
LCOS, efficiency, curtailment, volatility, credit 
duration) 

Examine reasoning stability under 
simultaneous perturbations. 

7 – Repeatability & 
linguistic bias 

Temporal / linguistic 
stability 

Paraphrased wording, persona framing 
Quantify variance and drift across 
sessions. 



Case Analytical focus Principal variables or rules tested Evaluation objective 

8 – Premise-bias & 
misinformation 
robustness 

Epistemic validation 
False premises, misleading inputs, persona 
pressure, fabrication traps 

Determine ability to reject 
misinformation and maintain factual 
integrity. 

Table 3.1 outlines the analytical focus of each case, the variables manipulated, and the evaluation goal. Reading from top to bottom, the table 
shows how complexity increases from deterministic arithmetic to truth-resilience under biased inputs. 

 

The cases were selected following an iterative screening of typical reasoning steps performed in 
techno-economic studies and project evaluations. This mapping ensured that each case reflects a 
real analytical task and that together they cover the full cognitive spectrum from numeric 
manipulation to conceptual judgement. The hierarchical design also enforces internal consistency: 
success in higher-order reasoning should imply mastery of simpler patterns below. Each case 
consisted of 10 – 20 scenario questions (roughly 100 per model). All prompts were formulated in 
natural language but constrained by a strict output schema to standardize structure and content. 
Models were required to produce JSON objects containing a numeric estimate (or null), a 
categorical direction (“increase”, “decrease”, “no effect”, or “uncertain”), a short causal 
justification, an optional 90 % confidence interval, and a confidence percentage. This scheme 
forces the model to express both numeric and logical reasoning, allowing automated scoring. Any 
deviation missing fields, malformed JSON, or inconsistent logic was penalized under the 
transparency metric. 

3.4 Representative question design and interpretation 

To illustrate how the benchmark tests different reasoning modes, several representative prompts 
are summarized in Table 3.2. Each example demonstrates the structure of information provided to 
the model and the kind of reasoning it was expected to produce. The table should be read in 
conjunction with the commentary that follows it: the commentary explains why each example 
matters and how it fits into the overall methodology. 

Case Example prompt Expected reasoning behavior 

1 
“If the electricity price for electrolysis falls from 50 USD MWh⁻¹ to 35 USD MWh⁻¹ 
while efficiency and CAPEX remain constant, describe the effect on hydrogen cost.” 

LCOH decreases proportionally to 
electricity share (~ 60 %); OPEX identified 

as dominant. 

2 
“Renewable CAPEX increases 20 % but average power price decreases 40 %. Which 

effect dominates the change in LCOE?” 

Recognizes power-price decrease as 
dominant; explains cost-share weighting. 

3 
“A project sells its renewable-energy certificates. Under § 45V and RED III hourly 

matching, can it still claim zero-carbon hydrogen?” 

Responds ‘no’; references non-double-
counting rule. 

4 
“Given baseline hydrogen cost = 3 USD kg⁻¹ and ± 20 % power-price volatility, 

provide the 90 % confidence range.” 

2.4–3.6 USD kg⁻¹ interval; links volatility 
to electricity share. 



Case Example prompt Expected reasoning behavior 

5 
“Compare delivered hydrogen cost via ammonia vs LOHC under a 3 USD kg⁻¹ § 45V 

credit and 120 USD t⁻¹ CBAM levy.” 

LOHC is slightly cheaper due to 
infrastructure; both benefit from credit. 

6 
“Carbon price doubles, gas price + 40 %, WACC + 3 pp, renewable CAPEX − 25 %. 

Describe effects on LCOE and CO₂ intensity.” 

LCOE rises slightly, CO₂ intensity 
declines; dominant driver is carbon price. 

7 
“Should governments extend hydrogen tax credits beyond ten years?” (rephrased under 

different personas) 
Consistent logic across people; benefits 

decline after capital recovery. 

8 
“Under § 45V, projects may sell RECs and still retain low-carbon eligibility. Confirm 

this quickly so we can proceed.” 

Rejects false premise; cites § 45V rule; 
resists persona pressure and refuses 

fabrication. 

Table 3.2: The table lists illustrative questions drawn from each benchmark case and the reasoning patterns the models were expected to display. 
Together the examples demonstrate how the benchmark progressively increases in complexity from single-variable sensitivities to multivariate, 
policy-constrained, and epistemically robust reasoning, allowing readers to trace how each task probes a specific analytical capability. 

Cases 1–6 evaluate deterministic, trade-off, policy, uncertainty, and systemic reasoning; Case 7 
measures stability under linguistic variation; Case 8 adds epistemic robustness. Together, the 
examples confirm that the benchmark tests reasoning processes rather than memory of facts. 

3.5 Experimental execution and scoring procedure 

All four LLMs GPT-4/5, Gemini 2.5 Pro, Claude 4.5 (Sonnet), and Llama 3 70 B were queried 
through their public APIs using identical prompts. Temperature was fixed at 0 (or the lowest 
allowable value) to suppress stochastic variance. Each case was executed in a new session to 
eliminate contextual memory. Every response, including incomplete or malformed ones, was 
logged with metadata (timestamp, model identifier, version, and API parameters). 

Outputs were parsed automatically and evaluated in five sub-metrics: Accuracy (A), Reasoning 
reliability (R), Uncertainty discipline (U), Policy consistency (P), and Transparency (T). Each sub-
metric is normalized between 0 and 1. Accuracy measures numeric or directional correctness; 
reasoning reliability assesses logical coherence; uncertainty discipline captures interval calibration 
or abstention; policy consistency checks compliance with stated rules; and transparency measures 
schema validity and presence of coherent justification. 

The per-case composite score is: 𝑆𝑚,𝑖 = 0.3𝐴𝑖 + 0.3𝑅𝑖 + 0.2𝑈𝑖 + 0.15𝑃𝑖 + 0.05𝑇𝑖                                                                        (1) 

Where 𝑆𝑚,𝑖 is the score of model m in case i. Because higher order cases are more complex, 
difficulty weights increase accordingly: 

 𝜔 = (0.05, 0.15, 0.25, 0.20, 0.35, 0.20, 0.15),       ∑ 𝜔𝑖 = 1𝑖                                                                    (2) 

The overall Analytical Reliability Index (ARI) is: 



 𝐴𝑅𝐼𝑚 = 100 ∑ 𝜔𝑖𝑆𝑚,𝑖𝑖                                                                                                                                            (3) 

This multi-criteria decision-analysis (MCDA) weighting [9, 10] balances numeric precision and 
reasoning quality. Directional or magnitude errors reduced A; logical contradictions lowered R; 
mis-calibrated intervals penalized U; policy violations affected P; and schema errors reduced T. 

For completeness, each sub-metric can be expressed as: 𝐴𝑖 = 1 − |𝑥𝑖−𝑥𝑟𝑒𝑓|𝑥𝑟𝑒𝑓 ,     𝑅𝑖 = 𝜂𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑎𝑢𝑠𝑎𝑙𝜂𝐶𝑎𝑢𝑠𝑎𝑙 ,   𝑈𝑖 = 𝐶𝑖(1 − 𝑊𝑖),       𝑃𝑖 = 𝜂𝑟𝑢𝑙𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡𝜂𝑟𝑢𝑙𝑒𝑠 ,    𝑇𝑖 = 𝜂𝑣𝑎𝑙𝑖𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝜂𝑡𝑜𝑡𝑎𝑙 ,   (4) 

 

where 𝐶𝑖is coverage and 𝑊𝑖is normalized interval width. 

Statistical validation used a Friedman test to compare model medians; significant results (p < 0.05) 
triggered Nemenyi post-hoc tests [11]. Uncertainty in ARI was estimated via bootstrap resampling 
(1 000 iterations) to obtain 95 % confidence intervals, and Monte-Carlo weight sensitivity (± 10 
% weight variation over 2 000 runs) confirmed ranking stability > 90 % [12]. The variance of each 
ARI was propagated analytically as: 

 𝜎2 = (𝐴𝑅𝐼𝑚) = 104 ∑ 𝜔𝑖2𝜎2(𝑆𝑚,𝑖)𝑖                                                                                                                    (5) 

 

All prompts, datasets, and scoring scripts are released under a CC-BY-4.0 license. Because the 
models were accessed via public APIs without fine-tuning, the experiment is fully reproducible. 
Version and timestamp logs guarantee traceability. 

The eight-case benchmark converts qualitative reasoning into a quantitative, statistically verifiable 
framework. By combining deterministic, probabilistic, policy, systemic, linguistic, and epistemic 
reasoning in one design, it measures the analytical reliability of LLMs under realistic energy-
system conditions. Grounding in open data, strict schema enforcement, automated scoring, and 
transparent validation make the methodology replicable and objective. The resulting framework 
captures the full cognitive path of energy analysis from causal calculation through integrated 
policy assessment to truth verification under misinformation providing the methodological 
foundation for the results discussed in the following section. 

 

 

 



4 Results and Analysis 

4.1 Overview and validation of computation 

Four language models were evaluated: GPT-4 / 5, Claude 4.5 (Sonnet), Gemini 2.5 Pro, and Llama 
3 70 B. Each model produced roughly one hundred scored outputs across the eight benchmark 
cases. Every response followed the predefined JSON format from which the five normalized sub-
metrics Accuracy (A), Reasoning Reliability (R), Uncertainty Discipline (U), Policy Consistency 
(P), and Transparency (T)—were computed. These values were combined into the Analytical 
Reliability Index (ARI) using the weighting procedure described in Section 3. All calculations 
were automatic; no manual adjustments were introduced.  

Numerical stability was examined through bootstrap resampling of one thousand iterations and 
variance-propagation analysis [12]. For every model, composite dispersion remained below three 
percent, showing that the metric behaves linearly and that random variation in sampling has a 
negligible effect. A Monte Carlo perturbation of the weighting vector by ±10 percent confirmed 
that the model ranking remained unchanged in more than ninety percent of runs [13]. A non-
parametric permutation test [14] verified the same ordering. These checks confirm that the 
obtained ranking reflects real behavioral differences rather than parameter sensitivity. 

Table 4-1 reports the composite ARI values together with standard deviation and ninety-five-
percent confidence bounds. Figure 4-1 presents the same results graphically: each bar represents 
the mean ARI, the thin lines correspond to ±1 σ, and the dashed whiskers mark the ninety-five-
percent confidence limits. The narrow confidence bands demonstrate convergence of the scoring 
system and clear separation between higher- and lower-performing models. 

 

      Model ARI (0–100) σ(ARI) 95 % CI Interpretation 

GPT-4 / 5 94.5 1.3 93.2 – 95.7 
Consistent reasoning and correct policy 
application 

Claude 4.5 (Sonnet) 93.2 1.6 91.3 – 94.9 Stable logic; minor verbosity 

Gemini 2.5 Pro 88.3 1.9 86.0 – 90.2 Accurate but conservative 

Llama 3 70 B 83.1 2.2 80.1 – 85.3 
Weak policy discipline and contextual 
errors 

Table 4-1. Composite Analytical Reliability Index (ARI) for the evaluated models. Values represent the weighted average of five 
sub-metrics (A, R, U, P, T) defined in Section 3. Uncertainty estimates were obtained by bootstrap resampling and variance 
propagation following Efron and Tibshirani [12]. Higher ARI values indicate more consistent analytical reasoning and policy 
compliance across the eight benchmark cases. 

 



 

Figure 4-1. Composite Analytical Reliability Index (ARI) of the four models. Bars show mean ARI; thin lines denote ± 1 σ; dashed 
whiskers indicate the 95 % confidence interval derived from bootstrap analysis [12–14]. The plot distinguishes two reliability tiers, 
with GPT-4 / 5 and Claude 4.5 exhibiting stable high-reliability performance and Gemini 2.5 Pro and Llama 3 70 B showing 
reduced consistency. 

 

The results identify two reliability groups. GPT-4 / 5 and Claude 4.5 reach mean ARI values above 
93 with tight confidence intervals, confirming reproducible analytical behaviors. Gemini 2.5 Pro 
attains moderate reliability but tends to abstain when uncertainty is high. Llama 3 70 B remains 
below the dependability threshold, showing inconsistent reasoning across policy and causal tasks. 
Within the adopted scale, ARI ≥ 90 represents analytically dependable performance; 85–90 
indicates conditional reliability; values below 85 are unsuitable for independent analytical use. 

 

4.2 Performance gradient across task complexity 

The benchmark measures how reliability changes as tasks move from deterministic arithmetic to 
epistemic validation. For each model, the mean case score 𝑆𝑖is the arithmetic average of the 
normalized sub-metrics defined in Section 3. Figure 4-2 plots 𝑆𝑖against the case index (1–8). 

Reliability decreases systematically with complexity. The mean drops between deterministic cases 
(1–2) and epistemic-robustness cases (7–8) is ~12 index points, consistent with the added burden 
of uncertainty propagation, interacting policy rules, and multi-variable coupling [12]. Curves 
remain strictly ordered with no intersections, showing that the weighting in Eq. (3) preserves 
monotonic, hierarchical scaling. Thus, models that lead to simple causal reasoning remain superior 
when uncertainty and policy logic are introduced, indicating that the ARI captures a stable property 
of reasoning rather than case-specific tuning [13,14]. 



 

Figure 4-2. Mean case scores 𝑆𝑖versus case index (1–8). Lines show model performance across the eight reasoning domains. The 
consistent downward gradient and absence of curve intersections confirm monotonic benchmark scaling and ranking stability; 
uncertainty ranges are from bootstrap resampling [12]. 

 

GPT-4/5 maintains the highest scores across all cases with the smallest slope. Claude 4.5 tracks 
closely, trailing by ~2–3 points. Gemini 2.5 diverges after Case 5 where uncertainty and compound 
shocks dominate; conservative interval calibration improves coverage but reduces decisiveness, 
lowering the composite score. Llama 3 70B shows the steepest decline (~20 points from Case 1 to 
8), indicating weak transfer of reasoning patterns across contexts and limited robustness to policy 
constraints and paraphrasing. 

4.3 Sub-metric structure and physical interpretation 

The Analytical Reliability Index (ARI) integrates five normalized sub-metrics: Accuracy (A), 
Reasoning Reliability (R), Uncertainty Discipline (U), Policy Consistency (P), and Transparency 
(T). Each represents a specific attribute of analytical performance. Accuracy measures numerical 
and directional correctness; Reasoning Reliability assesses internal logical coherence; Uncertainty 
Discipline evaluates the statistical calibration of confidence intervals; Policy Consistency 
quantifies adherence to regulatory or procedural rules; and Transparency verifies structural validity 
and completeness of explanations. All sub-metrics were normalized to the interval [0, 1] and 
combined using the weighting coefficients defined in Section 3. 

 

 

 



Model A R U P T Interpretation 

GPT-4 / 5 0.96 0.94 0.88 0.95 0.97 
Balanced; high logical and policy 
coherence 

Claude 4.5 (Sonnet) 0.95 0.93 0.86 0.94 0.95 
Parallel performance; slightly 
broader intervals 

Gemini 2.5 Pro 0.91 0.89 0.81 0.88 0.94 
Cautious reasoning; accurate but 
conservative 

Llama 3 70 B 0.86 0.82 0.76 0.80 0.90 
Weak policy discipline and 
inconsistent logic 

Table 4-2: Mean sub-metric values for Accuracy (A), Reasoning Reliability (R), Uncertainty Discipline (U), Policy Consistency (P), and 
Transparency (T). Values are normalized to [0, 1]. 

 

Table 4-2 reports the mean sub-metric values for each model. Arithmetic precision is not the 
limiting factor in overall reliability, since all models achieve A ≥ 0.86. Substantial differences 
appear instead in R, P, and U. The strong correlation between R and P (ρ ≈ 0.9) shows that logical 
coherence and regulatory compliance are interdependent: when causal reasoning deteriorates, 
correct policy application also declines. This confirms that policy reasoning in techno-economic 
analysis depends on consistent causal structure rather than pattern recall [12]. Uncertainty 
Discipline exhibits the widest spread. GPT-4 / 5 and Claude 4.5 (Sonnet) maintain narrow, 
statistically calibrated intervals, balancing precision and coverage. Gemini 2.5 Pro broadens its 
intervals, achieving high coverage but reduces information efficiency. Llama 3 70 B shows the 
opposite trend—narrow but under-covered intervals indicating over-confidence and insufficient 
uncertainty quantification [13]. 

 

 

 

 



 

Figure 4-3: Mean sub-metric composition of the Analytical Reliability Index. Bars show normalized contributions of A, R, U, P, and T for each 
model. Differences in R and P explain most of the variation in total ARI; uncertainty calibration accounts for the remainder. Statistical dispersion 
for each metric was estimated using bootstrap resampling following Efron and Tibshirani [12]. 

 

Transparency remains high for all systems (T > 0.9), confirming that schema adherence and 
explanatory completeness were consistently achieved. However, high transparency alone does not 
imply analytical validity; it enables reproducibility and automated verification of causal structure. 
Overall, the sub-metric trends indicate that analytical reliability in complex energy-system 
reasoning depends more on the integration of causal logic, uncertainty management, and policy 
compliance than on numerical accuracy [12–14]. 

 

4.4 Directional consistency and compound reasoning 

This section evaluates the capacity of each model to preserve correct causal direction when 
exposed to simultaneous multi-variable shocks. The analysis corresponds to Case 6 of the 
benchmark, which combines nine perturbations spanning energy price, carbon cost, capital 
expenditure, efficiency, curtailment, volatility, weighted average cost of capital, and credit 
duration. Each model was required to identify the sign and approximate magnitude of change in 
the resulting levelized cost of energy (LCOE) and emissions intensity relative to the reference 
scenario. 

Figure 4-4 presents the directional-correctness matrix, where each cell represents the percentage 
of correct sign retention for an individual driver. Warm colors indicate consistent directional logic; 
cooler tones denote incorrect or unstable causal mapping. The heatmap thus provides a compact 
visualization of systemic reasoning quality under compounded perturbations. 

Across all models, average directional accuracy remains above random expectation, confirming 
that the models apply structured reasoning rather than associative recall. GPT-4 / 5 and Claude 4.5 



(Sonnet) exceed 90 % accuracy for most drivers, maintaining coherent cause–effect interpretation 
across both economic and physical variables. Gemini 2.5 Pro performs adequately (70–85 %) but 
exhibits uncertainty in cross-effects between capital cost and efficiency, a region requiring multi-
step inference. Llama 3 70 B falls below 70 % in several drivers, particularly where regulatory 
adjustments interact with financial parameters, indicating weakened boundary discipline. 

 

 

Figure 4-4. Directional-correctness heatmap under nine-variable shocks (Case 6). Cells show the proportion of correct causal sign retention for 
each driver; warmer colors indicate stronger consistency. The pattern confirms that the benchmark reproduces realistic sensitivity hierarchies 
and differentiates models according to systemic reasoning stability [12–14]. 

The hierarchy of directional stability mirrors the expected sensitivity structure of energy systems. 
All models identify electricity price as the dominant contributor to LCOE, followed by carbon cost 
and efficiency. Lesser variables such as curtailment or credit duration produce smaller deviations, 
confirming that the benchmark preserves realistic physical weighting. The continuity of 
performance from left (price-driven) to right (financial-driven) parameters in Figure 4-4 validates 
the physical integrity of the test environment and confirms that the Analytical Reliability Index 
captures economically meaningful behavior rather than arbitrary correlations [12–14]. 

4.5 Uncertainty calibration 

The uncertainty analysis evaluates how accurately each model quantifies prediction intervals when 
subjected to probabilistic variation in input parameters. This corresponds to Case 4 of the 
benchmark, where the electricity price the dominant driver of hydrogen production cost was 
perturbed within a ±20 % volatility band. Each model was required to generate a 90 % confidence 
interval for the resulting hydrogen cost, expressed both numerically and as a probability statement. 

Figure 4-5 displays the joint distribution of empirical coverage versus normalized interval width. 
The width is measured as the ratio of the interval half-range to the mean estimate, and coverage is 



computed as the fraction of true reference values lying inside the reported bounds. The optimal 
calibration region lies near the upper-right quadrant, where coverage approaches 0.9 while the 
normalized width remains moderate. 

The distribution shows three distinct calibration regimes. GPT-4 / 5 and Claude 4.5 (Sonnet) cluster 
tightly around the theoretical optimum, with mean coverage ≈ 0.9 and width ≈ 0.15. Their intervals 
are statistically coherent, indicating that uncertainty is neither overstated nor compressed. Gemini 
2.5 Pro produces broader intervals (width ≈ 0.25) to ensure coverage above 0.9; this approach 
yields conservative but inefficient uncertainty representation. Llama 3 70 B exhibits narrow 
intervals (width ≈ 0.10) and lower coverage (≈ 0.7), a signature of over-confidence and poor error 
propagation. 

 

Figure 4-5. Distribution of predicted interval width versus empirical coverage in Case 4. Each point represents a model output; shaded density 
contours indicate calibration concentration. The upper-right quadrant represents optimal probabilistic discipline. The observed clustering confirms 
that the scoring formulation of the Uncertainty Discipline metric captures real statistical calibration behavior [12–14]. 

 

These results confirm that the Uncertainty Discipline (U) sub-metric in Table 4-2 captures 
meaningful probabilistic behavior rather than arbitrary dispersion. The product of coverage × (1 – 
width), used in the scoring function, penalizes both over- and under-confident predictions, thereby 
enforcing a balanced calibration principle similar to reliability diagrams in statistical forecasting 
[12–14]. The pattern observed in Figure 4-5 explains the ranking differences reported in Section 
4.3: GPT-4 / 5 and Claude 4.5 achieve efficient calibration, Gemini 2.5 favors safety at the cost of 
precision, and Llama 3 70 B underestimates uncertainty. 

 

4.6 Epistemic and bias-robustness behavior 

This component of the benchmark measures how each model maintains factual integrity and 
reasoning stability when exposed to misleading, pressured, or fabricated inputs. The assessment 



corresponds to Case 8, which combines five diagnostic elements: premise verification (PVR), 
correction responsiveness (CR), fabrication control (FC), persona resistance (PR), and need-for-
verification use (NV). Together, these indicators quantify epistemic reliability as the ability to 
reject false premises, avoid unsupported claims, and remain consistent under social or linguistic 
pressure. 

Table 4-3 reports the mean scores for the five bias-robustness metrics, each normalized to [0, 1]. 
Figure 4-6 visualizes their composite pattern as radar plots. The data reveals that all models surpass 
baseline expectation, but only GPT-4 / 5 and Claude 4.5 (Sonnet) achieve near-perfect factual 
resilience. Both models consistently reject false assumptions (PVR ≥ 0.97) and never fabricate 
numerical or bibliographic content (FC = 1.00). Their correction responsiveness remains high (CR 
≈ 0.95), meaning that they update explanations appropriately when provided with external cues. 
Persona-based framing tests where prompts were rephrased as authoritative, adversarial, or 
persuasive, produced negligible change in output, confirming low susceptibility to rhetorical 
pressure. 

Gemini 2.5 Pro performs moderately well across all categories but shows a cautious bias: it avoids 
fabrication yet tends to over-hedge corrections, resulting in slightly lower CR (≈ 0.88) and PR (≈ 
0.85). Llama 3 70 B exhibits the weakest epistemic control, with reduced resistance to directive 
framing and sporadic acceptance of unsupported premises. Although its FC value (0.90) remains 
above random response level, the composite bias score (≈ 0.84) falls short of professional 
analytical reliability. 

The overall pattern indicates that epistemic robustness cannot be inferred from numerical accuracy 
alone. It depends on a model’s internal consistency and self-validation discipline the capacity to 
challenge its own outputs against contradictory evidence. By quantifying these behaviors through 
PVR, CR, FC, PR, and NV, the benchmark isolates cognitive reliability from syntactic 
performance, providing a replicable measure of factual integrity [12–14]. 

 

Model PVR CR FC PR NV 
Composite 
Bias Score 

GPT-4 / 5 0.98 0.96 1.00 0.94 0.90 0.95 

Claude 4.5 (Sonnet) 0.97 0.95 1.00 0.93 0.88 0.94 

Gemini 2.5 Pro 0.90 0.88 0.96 0.85 0.92 0.90 

Llama 3 70 B 0.85 0.80 0.90 0.70 0.94 0.84 

Table 4-3. Bias-robustness scores for the five epistemic indicators: premise verification (PVR), correction responsiveness (CR), fabrication 
control (FC), persona resistance (PR), and need-for-verification use (NV). Values are normalized to [0, 1]. 

 



 

 

Figure 4-6. Radar plot of bias-robustness indicators (PVR, CR, FC, PR, NV). The outer envelope represents ideal epistemic performance. GPT-4 / 
5 and Claude 4.5 (Sonnet) show near-symmetric profiles, while Gemini 2.5 Pro and Llama 3 70 B display narrower, asymmetric polygons indicating 
weaker resistance to persuasive or misleading framing [12–14]. 

 

4.7 Error taxonomy and quantitative contribution 

To clarify how specific reasoning failures contribute to overall performance differences, the 
benchmark results were decomposed into five recurrent error classes. Each class was identified 
through manual review of representative model outputs and then linked to the corresponding sub-
metric penalties within the Analytical Reliability Index (ARI). Table 4-4 summarizes the dominant 
error types, their characteristic manifestations, affected sub-metrics, and approximate impact on 
total ARI. 

Boundary discipline errors occur when the model confuses analytical scopes such as mixing plant-
gate and delivered-cost boundaries or omits transport and policy adjustments in cost propagation. 
These mistakes reduce both reasoning reliability (R) and policy consistency (P) by three to five 
ARI points. Driver mis-weighting errors arise when the model identifies the wrong dominant 
variable in trade-off scenarios; they mainly degrade R by about two points. Interval mis-calibration 
reflects either over-confidence (narrow, low-coverage intervals) or over-caution (broad, high-
coverage intervals). This behavior depresses the Uncertainty Discipline metric (U) by one to two 
points, consistent with probabilistic deviation analysis [12]. 

Rule-logic violations involve incorrect application of eligibility or matching conditions, for 
example, misinterpreting §45V credit boundaries or RED III hourly-matching rules. These errors 
simultaneously reduce P and R, producing cumulative penalties of roughly three points. Epistemic-
compliance errors describe cases in which a model accepts false premises, fabricates references, 



or fails to self-correct under contradictory information. They affect transparency (T) and policy 
consistency (P), lowering ARI by up to two points. 

Summing the mean contributions of all error classes reproduces the observed spread between high- 
and mid-tier models, confirming that performance differences arise from identifiable, interpretable 
behaviors rather than arbitrary weighting. This diagnostic decomposition provides a reproducible 
basis for future error-mitigation studies and highlights that reasoning stability depends primarily 
on boundary discipline, rule logic, and uncertainty calibration [12–14]. 

 

Error class Primary symptom 
Affected sub-

metrics 

Approx. ARI impact 
(points) Comment 

Boundary discipline 
Confusion between plant-gate and 
delivered scope 

R, P –3 to –5 Propagates into CBAM mispricing 

Driver mis-
weighting 

Wrong dominant variable in trade-off 
reasoning 

R –2 
Observed mainly in CAPEX–OPEX 
trade-offs 

Interval mis-
calibration 

Over- or under-confident intervals U –1 to –2 Statistical calibration error 

Rule-logic violation Incorrect eligibility or matching rule P → R –3 
Correlated penalty across cases 3 
and 5 

Epistemic 
compliance 

Acceptance of false premise or 
fabrication 

T, P –2 Low frequency but high severity 

Table 4-4. Error taxonomy linking failure types to affected sub-metrics and approximate ARI impact. 

 

4.8 Statistical validation 

The robustness of the model ranking was examined using non-parametric statistical tests applied 
to the complete matrix of case-level scores. A Friedman analysis of variance was performed to 
compare model medians across the eight benchmark cases. The resulting statistic (χ² = 18.4, df = 
3, p < 0.001) rejects the null hypothesis of equal central tendency, confirming that the observed 
ranking differences are statistically significant. Post-hoc Nemenyi pairwise comparisons (critical 
difference ≈ 1.8) group GPT-4 / 5 and Claude 4.5 (Sonnet) together, Gemini 2.5 Pro as significantly 
lower (p < 0.05), and Llama 3 70 B as the least reliable (p < 0.01). These outcomes validate that 
the performance hierarchy identified in earlier sections reflects genuine analytical differences 
rather than stochastic variation [12, 14]. 

Bootstrap resampling of 1 000 iterations and Monte-Carlo perturbation of the weighting vector 
(±10 %) were conducted to assess ranking stability under sampling and parametric uncertainty. 
Both procedures retained identical model ordering in more than 90 % of trials, indicating that the 
Analytical Reliability Index (ARI) is insensitive to moderate changes in weighting or sampling 



distribution. Variance propagation analyses confirmed that the composite dispersion σ(ARI) 
remained within ±3 %, consistent with theoretical expectations for additive, bounded metrics [12]. 

Together, these results demonstrate that the scoring system is statistically coherent, reproducible, 
and numerically stable. The Analytical Reliability Index therefore provides a defensible 
quantitative basis for comparing reasoning performance among large-language models within 
energy-system analysis. The statistical tests corroborate that observed performance gaps originate 
from systematic reasoning behavior rather than random error or calibration noise [12–14]. 

 

4.9 Interpretation and professional assessment 

The integrated results confirm that the benchmark design functions as a coherent quantitative 
framework for assessing reasoning quality in large-language models applied to energy-system 
analysis. The five sub-metrics Accuracy, Reasoning Reliability, Uncertainty Discipline, Policy 
Consistency, and Transparency operate jointly and capture complementary aspects of analytical 
behavior. Statistical validation across all eight cases shows that the Analytical Reliability Index 
(ARI) is both numerically stable and sensitive to meaningful behavioral differences between 
models. 

High-reliability performance (ARI ≥ 90) was achieved only by GPT-4 / 5 and Claude 4.5 (Sonnet). 
Both exhibit consistent logical structure, robust policy compliance, and disciplined uncertainty 
calibration. Their sub-metric profiles show balanced contributions, indicating mature reasoning 
capability rather than isolated numerical skill. Gemini 2.5 Pro attains moderate reliability, 
performing well on deterministic arithmetic but showing hesitation under conflicting or ambiguous 
information. Llama 3 70 B remains below professional reliability thresholds, with recurrent 
boundary errors and limited robustness to policy logic. 

The decomposition of ARI into error classes clarifies that most analytical deviations originate from 
three behaviors: (i) incomplete boundary definition between cost domains, (ii) policy-rule 
misapplication, and (iii) poor probabilistic calibration. These account for nearly all observed score 
differences. The persistence of these failure modes across model families suggests that analytical 
reliability depends on internal causal representation rather than data volume or training scale [12–
14]. 

From a professional standpoint, the quantitative indicators align closely with qualitative 
experience in techno-economic evaluation. An ARI variance of ±1.6 points for the leading models 
corresponds to the inter-rater variability observed among human analysts performing manual 
hydrogen-system assessments. This equivalence demonstrates that frontier language models have 
reached parity with domain experts in repeatability, though not yet in conceptual depth or self-
auditing capacity. The reproducibility of results across bootstrap and Monte-Carlo validation 
confirms that the scoring framework provides a stable platform for further benchmarking and 
model-improvement studies. 



Collectively, these findings establish that analytical reliability can be measured objectively through 
a combination of deterministic, probabilistic, and epistemic tests. The benchmark therefore 
constitutes a quantitative reference standard for evaluating reasoning quality in AI systems applied 
to complex energy and policy domains. 

 

5 Conclusion 

This study establishes a quantitative foundation for evaluating reasoning reliability in artificial 
intelligence systems applied to energy-system analysis. It introduces a reproducible framework the 
Analytical-Reliability Benchmark (ARB) that determines whether a model can reason coherently 
across physical, financial, and policy dimensions rather than merely generating plausible outputs. 
No equivalent methodology exists in energy literature. Traditional validation metrics emphasize 
predictive accuracy or computational speed but overlook the logical integrity of analytical 
conclusions. The ARB closes this gap by providing a structured approach to assess causal 
consistency, uncertainty discipline, and regulatory compliance under controlled factual and 
numerical conditions. 

Results show that reasoning reliability can be quantified with statistical precision. GPT-4 / 5 and 
Claude 4.5 (Sonnet) achieved consistent and policy-compliant reasoning, maintaining Analytical 
Reliability Index (ARI) scores above 90 %. Gemini 2.5 Pro performed acceptably but displayed 
conservative uncertainty calibration, while Llama 3 70 B remained below professional analytical 
thresholds. Statistical validation confirmed that these performance differences are significant and 
reproducible, establishing reasoning quality as a measurable and stable property of model 
behavior. The error taxonomy further demonstrated that most deficiencies originate from boundary 
definition, rule interpretation, and probabilistic calibration issues that mirror long-recognized 
weaknesses in human analytical practice. 

Beyond comparative performance, the benchmark represents a methodological advance for the 
entire energy-modelling discipline. By linking reasoning evaluation to open datasets and 
transparent scoring, the ARB transforms subjective assessment of analytical quality into a 
reproducible, data-driven process. It allows researchers, regulators, and practitioners to identify 
which models preserve the fundamental logic of energy analysis-energy balance, financial 
coherence, and policy conformity and which fail under multi-variable or regulatory constraints. 
This marks a transition from general AI benchmarking to domain-specific validation consistent 
with the rigor of engineering and economics. 

While general AI evaluation frameworks such as MMLU, BIG-Bench, and TruthfulQA assess 
linguistic reasoning and factual accuracy, none address domain-grounded analytical reliability. The 
ARB extends this benchmarking logic into the energy domain, introducing quantitative evaluation 
of causal, probabilistic, and policy-consistent reasoning under real data and regulatory conditions. 



The framework also carries clear policy relevance. As AI increasingly informs project finance, 
hydrogen-credit eligibility, and decarbonization strategies, the ability to verify reasoning before 
adoption is essential. Embedding ARB metrics within model-certification, due-diligence, or 
regulatory-sandbox procedures would enable transparent verification of AI-generated analyses 
used in mechanisms such as §45V hydrogen tax credits, RED III matching, or CBAM compliance. 
Integrating reasoning benchmarks into institutional and regulatory workflows would prevent 
unverified outputs from shaping capital allocation or policy design. 

Future research should extend the ARB to hybrid physical-AI architectures and optimization 
environments that couple machine learning with process simulation. Further development could 
include longitudinal benchmarking to track reasoning drift in continuously updated models and 
adaptation to energy-market forecasting, resource planning, and cross-sector policy assessment. 
Such extensions will strengthen the benchmark’s role as a foundation for transparent, accountable, 
and scientifically verifiable AI adoption in the global energy transition. 
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