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Although machine learning (ML) and artificial intelligence (AI) present fascinating opportunities for innovation, their rapid

development is also significantly impacting our environment. In response to growing resource-awareness in the field, quan-

tification tools such as the ML Emissions Calculator and CodeCarbon were developed to estimate the energy consumption

and carbon emissions of running AI models. They are easy to incorporate into AI projects, however also make pragmatic as-

sumptions and neglect important factors, raising the question of estimation accuracy. This study systematically evaluates the

reliability of static and dynamic energy estimation approaches through comparisons with ground-truth measurements across

hundreds of AI experiments. Based on the proposed validation framework, investigative insights into AI energy demand

and estimation inaccuracies are provided. While generally following the patterns of AI energy consumption, the established

estimation approaches are shown to consistently make errors of up to 40%. By providing empirical evidence on energy esti-

mation quality and errors, this study establishes transparency and validates widely used tools for sustainable AI development.

It moreover formulates guidelines for improving the state-of-the-art and offers code for extending the validation to other do-

mains and tools, thus making important contributions to resource-aware ML and AI sustainability research.
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1 Introduction

Artificial intelligence (AI) holds many promises for our

world, however does not come without costs. While modern

AI enables sustainable innovation in domains such as con-

struction, transportation, healthcare, and manufacturing [31],

it also poses critical risks to our society, economy, and

environmentÐor, in other words, across all sustainability di-

mensions [59, 14]. The particular danger of ªsystemic risksº

and resulting need for ªenvironmental sustainabilityº was

manifested by experts worldwide, for example in the Inter-

national AI Safety Report [3]. Unfortunately, the field of ma-

chine learning (ML) lacks resource-awareness and is mostly

focused on boosting predictive performance [15]. Given that

publications often fail to justify their compute expenses or

discuss potential negative consequences [5], the observable

ªcompute trendsº [47] and ªbigger-is-better paradigmº [57]

are concerning but not surprising.

In order to use and advance AI in a sustainable man-

ner, it is therefore imperative to balance predictive capa-

bilities with resource consumption [18, 16], or put differ-

ently, acknowledge and navigate the ªPareto frontº of ªmulti-

dimensional model performanceº [14, 57]. Various works

explored such trade-offs by investigating the energy con-

sumption and carbon emissions of using AI for generative

purposes [36] and classic learning tasks, such as computer
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Figure 1: Compared to ground-truth energy measurements,

the ML Emissions Calculator [38] and CodeCarbon [10] of-

ten under- or overestimate the resource demand of AI.

vision [19, 46, 17] or natural language processing [50, 37].

Because respective studies require ªsystematic and accurate

measurementsº of compute demand [24], the community

developed tools for quantifying the energy consumption of

ML. Among the first projects is the ML Emissions Calcu-

lator [38], which statically estimates energy consumption

and resulting CO2-equivalents based on user-provided infor-

mation about the performed experiments. Shortly later, the

experiment-impact-tracker was published as a straightfor-

ward drop-in library for dynamically tracking compute uti-

lization and estimating carbon emissions of running Python

code [24]. Since the tool was not developed much further,
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it was quickly outshined by CodeCarbon [10], a library that

does not only allow for integrating resource estimations into

Python code, but moreover offers an interactive dashboard

view and useful emission comparisons (e.g., household con-

sumption or car driving). All tools became widely adopted

by resource-aware practitioners, with the ML Emissions Cal-

culator being cited over 1000 times on Google Scholar [38]

and CodeCarbon surpassing 1500 stars on GitHub and nearly

2 million downloads on PyPI [10].

While the aforementioned initiatives are without a doubt

valuable contributions for sustainable AI development, a cru-

cial question remains: How accurately do they estimate the

energy consumption of AI? Static approaches like the ML

Emissions Calculator assume a constant power draw of the

hardware, which however might change across different ex-

periments. Dynamic estimations via CodeCarbon consider

the actual compute utilization, however neglect hardware

components that cannot be profiled from software, such as

the power supply unit, cooling overhead, or peripheral de-

vices. Figure 1 summarizes these issues as a teaser to later

investigations, with each point representing a single AI ex-

periment. In comparison with ground-truth measurements

(turquoise), both the static (salmon) and dynamic (teal) tools

under- or overestimate the energy consumption of most ex-

periments by up to 40%. This motivates the study at hand,

which sheds light on the unknown figures of AI resource con-

sumption via four key contributions:

• Methodology for validating static and dynamic resource

estimation approaches (see Figure 2)

• Code base for reproducing and extending the experi-

ments to other domains and estimation approaches

• Experimental results that explore AI resource consump-

tion and estimation errors

• Discussion on related works, takeaways, limitations,

and implications for future research

By investigating the ground-truth energy demand of 50

models from the vision and language domain, this work fills

an important gap in sustainable AI literature. It provides em-

piric evidence that popular tools like CodeCarbon and the

ML Emissions Calculator should be enhanced to account

for the missing factors in their internal estimation proce-

dures. These insights empower researchers and practition-

ers to make informed decisions about the tools and methods

they use for sustainability assessments, carbon accounting,

and energy-aware AI system design and deployment.

2 Methodology

The core concepts for validating the estimation of AI en-

ergy consumption are schematically summarized in Figure

2, guiding this section. Practitioners who want to assess the

environmental impacts of using or developing AI generally

have three ways for quantifying respective numbers, to be in-

troduced next. The terminology was aligned with the frame-

work for sustainable and trustworthy reporting [14, 15]ÐAI

experiments (i.e., evaluations) are executed in an environ-

ment, which represents the hardware and software. The ex-

periment is characterized by a configuration, which describes

the learning task, dataset, and AI model (or method) at hand.

While this work focuses on AI deployment (i.e., inference

with pre-trained models), the following can be easily applied

to other tasks.

2.1 Static Estimation

At the most abstract level, the configuration and environment

of any executed experiment can be utilized to statically esti-

mate the corresponding energy demand and resulting envi-

ronmental impact. This approach is also implemented by the

ML Impact Calculator [38], which estimates the impact via

the total amount of CO2-equivalents:

CO2-Equiv = Power · Time · CO2 Efficiency (1)

All of the factors are constants derived from the given con-

figuration and environment, with the power consumption in

Watt commonly reflecting the main processor’s thermal de-

sign power (TDP) or processor base power (PBP), resulting

in Energy = Power · Time. This pragmatic simplifi-

cation understands the main processor as the biggest fac-

tor for the overall energy demand of running AI, which is

in line with respective studies [25], however hardly reflects

the complexity of modern execution environments. The

CO2 Efficiency describes the amount of CO2 emitted

per unit energy, which is primarily subject to the local en-

ergy mix [38]. Static estimations only require to measure the

running time and are thus easiest to perform, however fail

at accounting for dynamic compute utilization and hardware
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Figure 2: Schematic visualization for validating the static and dynamic estimation of energy demand via external measurements.

complexity. To give some examples for non-captured phe-

nomena, running models of varying size will affect the power

draw, performing different tasks (e.g., training or inference)

might result in differences of resource demand, and compute

utilization of a single experiment could even change over

time. In short, while serving practitioners with a straight-

forward solution to report on the environmental impacts of

running AI, static estimations remain rather vague approxi-

mations.

2.2 Dynamic Estimation

The second estimation approach aims at accounting for

dynamic resource demand, thus making the Power ×

Running Time in Equation 1 less static. In practice,

this requires to run additional profiling software on the ex-

ecution environment at hand, such as the aforementioned

experiment-impact-tracker [24] or CodeCarbon [10]. Inter-

nally, these libraries profile the power consumption of the

central or graphics processing unit (CPU / GPU) via manu-

facturer tools such as Intel’s running average power limit [29]

and NVIDIA’s management library [41]. They allow to it-

eratively capture the current processor power draw at any

point in time (t). By performing respective measurements

in short temporal intervals (∆Time = t − (t − 1)), it is

possible to estimate the resulting energy draw over time, i.e.,

Energy =
∑

T

t=1
Powert ·∆Time.

Unfortunately, few hardware systems have built-in capa-

bilities for tracking the power consumption of other compo-

nents than processors, neglecting for example the resource

demand of peripheral devices, power supply, and cooling.

The overhead impact of the latter recently received more at-

tention, with studies revealing that cooling can attribute to

over 10% of the overall AI power consumption [64, 32].

Moreover, special adaptions are required for profiling spe-

cialized hardware devices, such as edge accelerators by In-

tel and Google [49], or embedded computing boards (e.g,

NVIDIA Jetson) [18]. It should also be noted that inter-

nal hardware profiling usually requires administrative access

rights to the system and can cause a marginal energy draw

overhead. To summarize, dynamic estimation solutions are

easy to incorporate and likely better capture the actual re-

source consumption of the system, however face limitations

with regard to supported hardware and underestimation.

2.3 Validation via External Measurements

Overcoming the aforementioned limitations requires to

somehow measure the ground-truth Energy consumption.

In order to capture the impact of all environment compo-

nents, such measurements ideally need to be taken from out-

side of the system (i.e., externally). The ground-truth mea-

surements discussed in this work were obtained from a sim-

ple yet effective approach, using a standard energy meter,

a basic camera, and some straightforward computer vision

code. This setup is easy to realize and can thus be translated

to many AI experiment scenarios.

Energy meters exist in various forms, from traditional ana-

logue devices to smart gadgets [4]. Basic variants are not

only highly affordable (less than 10C), but can also be easily

installed between the power socket and plug of the hardware

on which the AI experiment is executed. While such simple

meters do not usually allow for digitally extracting the mea-

surements, the display can be easily tracked with a standard

camera. This setup allows to capture images of the displayed

energy consumption at the start and end of any experiment,

which can later be processed to numeric data via basic com-

puter vision and optical character recognition (OCR).
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Figure 3: Hardware setup for validating energy estimation with ground-truth data from an energy meter, tracked with a camera.

Figure 2 visualizes how all three approaches can be run

in parallel, using only one execution environment equipped

with some basic additional devices. By storing and aggregat-

ing the respective logs, it is possible to compare and validate

static estimation, dynamic estimation, and external measure-

ments of AI energy consumption. It is important to note that

external measurements also have certain drawbacksÐmost

importantly, they require additional hardware and implemen-

tation effort. In fact, all three approaches have their pros and

cons, with this work exploring their relation and complemen-

tary nature (see also the later Discussion).

2.4 Practical Setup

To empirically compare the different approaches for quanti-

fying AI energy consumption, the introduced concepts were

also practically implemented. Figure 3 showcases the experi-

mental setup, using a basic energy meter by LogiLink, a cam-

era by Logitech, and a deep learning workstation equipped

with an Intel i9-13900K CPU and NVIDIA RTX 4090 GPU.

To allow for overnight experiments and alleviate display

reflections, the setup also uses an LED light and a white

piece of cardboard. The experiment software was imple-

mented in Python and can be found at https://github.

com/raphischer/ai-energy-validation, which

also includes the logs and results. The dynamic estimate was

performed with CodeCarbon 3.0.1 [10], while the static es-

timate assumed a TDP of 300 Watt for the GPU (taken from

the ML Impact Calculator [38]) and 125 Watt for the CPU

(constant in CodeCarbon’s cpu_power.csv file). As ad-

ditional dependencies, experiment execution was stream-

lined with mlflow [61], camera access and computer vision

was enabled by opencv-python [6], OCR was performed with

scikit-learn [43] (using a custom random forest classifier),

the logs were analyzed with pandas [56], and all plots were

created with plotly [44].

Because AI deployment quickly exceeds the energy de-

mand of training, the experiments focused on the inference

performance of pre-trained AI models. To validate AI en-

ergy consumption across different configurations, the perfor-

mance of 30 image classifiers [48, 52, 22, 26, 23, 28, 9, 45,

65, 27, 53, 51, 54, 34], available from Keras 3 [8], as well

as 20 large language models [30, 63, 21, 2, 1, 55, 11, 20, 40,

60, 42] offered by Ollama 0.11.8 [7] was measured. Later re-

ferred to as Vision and Language, these open weights models

represent examples from two popular deep learning applica-

tion domains. All models were published between 2015 and

2025 and have a complexity between 2 million and 23 billion

parameters, making them feasible for single-GPU deploy-

ment (i.e., on-premise AI instead of AI-as-a-service [33]). To

assess their performance, the vision models were configured

to perform image classification on ImageNet samples [12]

for 2 minutes, testing inference on the CPU or GPU with a

batch size of 4 or 16 (i.e., processing 4 or 16 images at a

time). The language models were confronted with random

prompts from the Puffin dataset [39] for 15 minutes, using a

temperature of 0.1 or 0.7 (lower value makes the models be-

have more deterministic with regard to token probabilities).

If not otherwise specified, the following displays results for

the default batch size of 16 and temperature of 0.7. All re-

sults were averaged over three consecutive runs that reduce

random outlying behavior, with standard deviation informa-

tion indicated by error bars.
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Figure 4: Power draw of the execution environment (first row), energy draw for performing inference with a fixed number of

samples (second row), and energy estimation errors (third row), assessed for all three approaches and across all tested models.

There is a clear upwards trend of power, energy, and error, generally growing with model complexity. The energy estimation

approaches follow the general patterns of the ground-truth data but make significant estimation errors.

Running all experiment runs took less than three days and

resulted in carbon emissions based on the consumed energy,

connecting back to quantifying environmental impacts [38]

via Equation 1. With a ground-truth energy consump-

tion of 20.04 kWh, and assuming a CO2 Efficiency of

0.38 for Germany [62], the total emissions of the experi-

ments are estimated to 20.04 kWh · 0.38 kgCO2/kWh ≈

7.62 kg CO2-Equiv (not taking into account any embod-

ied factors [13] or overhead efforts from development, test-

ing, and writing). Keep also in mind this work only focuses

on model performance in terms of resource consumption and

does not explore any efficiency trade-offs with prediction

quality [14].

3 Results

Recall that a high-level summary of the experimental re-

sults was already given in Figure 1, however the follow-

ing explores them in more depth. To investigate the align-

ment of energy estimations and ground-truth data, the first

row of Figure 4 displays the average power draw (Watt, y-

axis) of all tested models (x-axis) during the experiment.

The models were sorted based on their parameter count,

from mobilenetV3small (2.5m parameters) [27] to mistral-

small3.2:24b [40], resulting in a visible upwards trend of

power consumption due to higher compute utilization. Nev-

ertheless, there is clear evidence that the power draw does

not only depend on the parameter countÐsome of the mod-

els are more power-efficient than expected from their com-

plexity, such as nasnetmobile [65], densenet201 [28], and

the gemma3 variants [20], Looking at the different curves,

we also see that the constant value assumed by the static en-

ergy estimation (salmon points at 300 Watt) differs from the

ground-truth measurements (turquoise), especially for the

smallest and largest models. The dynamic profiling (teal)

follows the general upwards trend, however compared to

the externally measured data, consistently underestimates the

power draw. The absolute difference between the measure-

ments and estimates often exceeds 100 Watt, which is a sig-

nificant error considering the TDP of 300 Watt [38], Impres-

sively, the maximum observed power draw (534 Watt for

magistral:24b [40]) is nearly twice as high as the static esti-

mate.
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In the second row of Figure 4, we see the amount of en-

ergy (Watt-seconds, logarithmic y-axis) required to classify

1000 images (vision) or answering a single query (language).

Once again showcasing an upwards trend, this demonstrates

the considerably higher resource demand of generative lan-

guage models compared to image classifiers [36]. While all

investigated models belong to the family of deep neural net-

works and consist of many million parameters, the classi-

fiers are clearly faster and more energy-friendly, processing

many thousand images in the time that language models need

for answering a single prompt. As before, the energy de-

mand does not strictly increase with parameter countÐsome

models like tinyllama:1.1b [63] and phi3:3.8b [1] answer

prompts with much less energy than expected from the com-

plexity. We moreover see that both estimation approaches

are generally able to follow the rough patterns of energy con-

sumption, however also make errors. The static estimates are

too high for small models and too low for bigger models,

while the dynamic approach always underestimates the en-

ergy demand. One should note that these differences are ex-

pected to increase when running the models for longer peri-

ods of time, as the constant mismatch of power consumption

(first row) will increase the gap over time.

The absolute energy estimation errors are displayed in the

last row of Figure 4, connecting back to the relative results in

Figure 1. The absolute values were used in order to also dis-

play the errors on a logarithmic scale. For smaller classifiers,

the static estimation results in lower errors (note that some of

them actually represent an overestimation), while for the big-

ger models, the dynamic estimates are more accurate. This

can also be observed in the other rows, where the teal (dy-

namic) data ºovertakesª the salmon (static) estimations with

growing model complexity. As we once again find an up-

wards trend in the bottom row, we also see evidence that the

estimation error tends to grow with model size and resource

demand. Estimation errors below 10 Watt-seconds are ex-

tremely rare and could only be observed for four of the vision

models. Across all three rows of the plot, the standard devi-

ations across the experimental runs are generally rather low,

demonstrating stability of the results with respect to random-

ization effectsÐexcept for deepseek-r1:8b [11], for which

strong variations across different queries are observed.

As another point of this experimental investigation, we

next explore how the batch size and temperature configu-

ration impacts the resource consumption of vision and lan-

guage models, respectively. Figure 5 showcases the ground-
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Figure 5: Impact of hyperparameter choice (x-axes) for AI

energy demand. The higher batch size and temperature re-

sults in more efficient compute utilization (i.e., lower energy

draw) for vision and language models, which also lead to

lower estimation errors.

truth energy demand (top row) as well as the energy estima-

tion errors (bottom row) when configuring the models with

these hyperparameters and once more classifying 1000 im-

ages or answering a single queryÐthe resulting performance

distribution is summarized via box plots. One should note

that the image batch size choice (left) only affects the running

time and resource demand of the vision models, however

does not impact their prediction quality. The results demon-

strate that larger batches result in lower energy draw and thus

also reduce the static and dynamic estimation errors across

all models, however the batch size is naturally capped by

the GPU memory capacity (i.e., larger batch sizes would not

have been feasible for some of the more complex models).

The temperature (right) actually affects the language model

output, as it weights the predicted token probabilities to con-

trol how explorative or deterministic the provided query is

answered. We see that the lower temperature (i.e., higher

focus on token probabilities) leads to higher energy demand

and larger estimation errors across the models. However, this

configuration also seems to introduce more variation, result-

ing in considerably larger boxes. These results evidence that

hyperparameters can have a strong impact on the resource

demand of AI models, necessitating to explicitly report on

the specific configuration of evaluated models.

While deep learning models have become especially pop-

6
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Figure 6: Absolute energy estimation errors of vision models

when deployed on the CPU or GPU (left). Both the static and

dynamic approaches make higher errors for CPU inference,

and the differences between the CPU and GPU errors (right)

grow with model complexity.

ular thanks to the efficiency of GPU deployment, there are

also cases where practitioners are restricted to running AI

on a CPU. This raises the question of whether energy esti-

mation inaccuracies are affected by performing inference on

the CPU or GPU. For this investigation, Figure 6 lists the re-

spective absolute estimation errors (left logarithmic x-axis)

for the vision models, when using or disabling the GPUÐ

accordingly, the faded scatter points represent the same data

displayed in the last row of Figure 4. This comparison clearly

shows that the errors of both estimation approaches are con-

siderably higher when only utilizing the CPU. As before,

the errors grow with model size (i.e., upwards along the y-

axis), and the differences between the CPU and GPU errors

seem to also increase. In the most extreme case (Efficient-

NetV2s [54]), the dynamic estimation error for CPU infer-

ence (5225 Ws) is over 463 times as high as the respec-

tive GPU error (12 Ws). On the right hand side, the differ-

ence between the CPU and GPU estimation errors is shown

more explicitly, in relation to the GPU errors. It demon-

strates that the relative CPU error also increases with model

complexity and is more than ten times (1000%) higher for

nearly all configurations. As before, variations can be ob-

served across the modelsÐthe ConvNeXt [34] and Efficient-

Net [53] variants have the highest error differences, while

some models with comparable parameter count show less de-

viations. Moreover, the static estimation error differences

(using a TDP of 125 Watt for the CPU) are considerably

higher than the ones observed for dynamic estimations (ex-

cept for MobileNetV3Large [27]). As such, the results indi-

cate that the choice of execution environment and processor

strongly impacts the accuracy of energy estimation tools, ex-

pecting higher errors for CPU-only inference.

4 Discussion

Let us interpret the experimental findings in the context of

related literature. Various works have investigated AI energy

consumption with the help of CodeCarbon [37, 36, 49, 14],

however our findings indicate that their reported numbers are

underestimations. The results also underline the importance

of acknowledging the overhead impact of cooling [64, 32],

which is one of the factors neglected by static and dynamic

energy estimation approaches. It should be noted that holis-

tic reporting on the environmental impacts of AI requires

to investigate more factors of the AI life cycle [58], includ-

ing intricate phenomena like embodied impacts [13] and re-

bound effects [35]. Nevertheless, I believe that reporting on

the ground-truth energy consumption of running AI models

remains a crucial ingredient for advancing the field in envi-

ronmentally sustainable ways [15]. To that end, the inves-

tigations of this study can be useful for refining established

tools, for example by incorporating constant factors that ac-

count for estimation errors or featuring explicit disclaimers

about inaccuracies. From the experimental analysis, six im-

portant takeaway points can be formulated:

1. Energy consumption generally scales with model com-

plexity and size, however certain AI architectures use

their parameters more efficiently than others

2. Energy estimation approaches likely resulted in inaccu-

rate reportings of environmental impacts, featuring er-

rors that grow with model size and time

3. Static estimation hits a sweet spot with low errors for

mid-sized models, but under- or overestimates the de-

mand of large or small architectures by -40 to 40 %

4. Dynamic estimation better follows the ground-truth pat-

terns, but consistently underestimates the consumption

by 20±30%
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5. Hyperparameters like batch size or temperature impact

the efficiency and estimation errors, and accordingly

should be carefully tuned and reported

6. Estimating the energy demand of CPU-only deploy-

ment results in errors that are considerably higher than

for GPU inference

While providing important insights, this study also faces

limitations, such as only evaluating a single environment.

Other works have already evidenced that the choice of hard-

ware and software impacts AI resource efficiency [17, 18],

and this investigation should be seen as a first step toward

more reliable energy estimations. The presented concepts

and accompanying code repository allow to easily extend the

investigation to other learning domains and evaluation se-

tups. Future work could collect more data and deepen the

analysis with regard to relations between configurations, en-

vironments, and resulting estimation errors. A second lim-

itation lies in the external measurement approach, which

might not be applicable to all AI deployment scenariosÐ

this actually also holds true for static and dynamic estima-

tions. For example, the energy consumption of compute

clusters and data centers can be hardly monitored with ba-

sic energy meters, requiring different solutions for measur-

ing ground-truth data, such as power distribution units with

outlet level metering. Nevertheless, the proposed validation

framework is applicable and affordable for on-premise de-

ployment scenarios, which remains popular for the sake of

privacy. What also remains for future work is a deeper inves-

tigation of how resource consumption trades with predictive

quality [18] or other performance aspects [16], as past studies

have focused on vision models [17]. In closing this discus-

sion, I would like to emphasise once more that I fully sup-

port the aforementioned energy estimation initiativesÐtheir

published tools are invaluable resources for environmentally-

aware practitioners, and I hope that my work will contribute

to their continued improvement.

5 Conclusion

To summarize, this study validated energy estimation tools

such as CodeCarbon and the ML Impact Calculator, which

succeed at capturing the rough resource consumption of eval-

uated AI models. However, comparing their quantified num-

bers with externally measured ground-truth data also re-

vealed significant estimation errors. Growing model com-

plexity was observed to increase AI energy demand and esti-

mation errors, which can even be further impacted by choice

of hyperparameters and processor. With this work, resource-

aware practitioners are equipped with means for investigat-

ing the actual energy consumption of their local AI experi-

ments. Moreover, developers of energy estimation tools can

improve their solutions along the guidelines of this work, ac-

counting for estimation errors of their approaches. As such,

the presented contributions establish transparency and not

only promote but facilitate the sustainable development and

use of AI.
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