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Abstract—The sixth generation (6G) systems are generally
recognized to be established on ubiquitous Artificial Intelligence
(AI) and distributed ledger such as blockchain. However, the
AI training demands tremendous computing resource, which
is limited in most 6G devices. Meanwhile, miners in Proof-of-
Work (PoW) based blockchains devote massive computing power
to block mining, and are widely criticized for the waste of
computation. To address this dilemma, we propose an Evolved-
Proof-of-Work (E-PoW) consensus that can integrate the matrix
computations, which are widely existed in AI training, into the
process of brute-force searches in the block mining. Consequently,
E-PoW can connect AI learning and block mining via the multiply
used common computing resource. Experimental results show
that E-PoW can salvage by up to 80 percent computing power
from pure block mining for parallel AI training in 6G systems.

Index Terms—6G system, artificial intelligence, blockchain,
consensus, evolved proof-of-work.

I. INTRODUCTION

THE sixth generation (6G) systems are generally recog-

nized to be established on ubiquitous Artificial Intelli-

gence (AI) to achieve efficient networking, communicating

and data analyzing [1], as well as on distributed ledger such

as blockchain to ensure the security, throughput, reliability,

trust, and transparency of the systems [2]. However, the

training of AI demands huge computing resource, which is

usually limited in most 6G devices, and should be assisted by

cloud computing, fog computing or edge computing. This will

eventually raise the cost of 6G systems in many aspects, such

as the construction, operation, and utilization. Meanwhile, in

Proof-of-Work (PoW) [3] based blockchains, each miner is

equipped with generous computing resource to execute a brute-

force search for the target hash value, and thereby competes

to generate a valid block. Although widely adopted for better

decentralization and security over alternative consensuses [4]

such as Proof-of-Stake (PoS) [5] or Proof-of-Activity (PoA)

[6], PoW is frequently criticized for tremendous waste in

the computing resource. Some novel consensus with identical

performance but much less computation consumption than

PoW is urgent to be developed.

Studies have been investigated to reduce such resource

waste in blockchains and save more computing power for AI

training. Lightweight consensuses such as PoS [5], PoA [6],
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Delegated-PoS [7], and Proof-of-Luck [8], are proposed to

replace PoW. A profit optimizing game between block mining

and AI training service providing is studied for the miners

in [9]. Whereas, these consensuses may considerably degrade

the decentralization or security of the blockchain system.

Instead of decreasing the computing resource consumed by the

consensuses, few studies try to salvage the wasted computing

power in PoW with valuable task processing. In [10], a Proof-

of-Exercise (PoX) consensus uses a pool of task proposals to

replace the target hash value search by computing tasks, which

however have different complexity levels and lead to unfair

competition [11]. Primecoin [12] replaces PoW’s target hash

value search with the search for two special chains of prime

number. The Proof-of-Deep-Learning (PoDL) consensus [13]

requires the miners to participate in a competition of deep

learning model training to generate valid blocks. However, the

amount of computing resource salvaged by either Primecoin

or PoDL is severely limited, since all the miners are solving

the identical problem simultaneously to keep the fairness of

the block generating competition.

To address this dilemma in both AI and blockchain, we

propose an Evolved-Proof-of-Work (E-PoW) consensus to

connect the computing resource consumed by AI training and

block mining, and thereby improve the computing efficiency

in 6G systems. The underlying connection is the matrix

multiplication calculation (MMC). MMC exists widely in AI.

As an example, nearly 90% of the workload in Google’s

Tensor Processing Unit is due to multi-layer perceptrons

(MLP) and recurrent neural networks (RNN), which are both

deep learning algorithms based on MMC [14]. At the same

time, MMC is feasible to be quantified and integrated into

the process of the brute-forth search for the target hash value.

Consequently, E-PoW can integrate the massive MMC of AI

training into the block mining of PoW-based blockchains,

keeping the advantages of PoW as well as making the comput-

ing power efficiently utilized. The contributions of this paper

are summarized as below:

• We propose a novel consensus E-PoW, where MMC in AI

training is integrated into the block mining process, and

the miners conduct the target hash value search based on

both the traditional block header and the result of MMC.

• We design detailed schemes to transform MMC tasks

with different computing complexities into normalized

matrix multiplications, which have identical computing

complexity and can be easily integrated into the process

of block mining through a uniform interface.
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Fig. 1. The basic idea of E-PoW to connect AI training and block mining in 6G systems.

• We conduct experiments in a campus network to verify

the availability and effect of E-PoW. The results show

that E-PoW can salvage considerable computing power

from pure block mining for parallel AI training.

The remainder of this paper is organized as follows. The

essentials of E-PoW are demonstrated in Section II. In section

III, we design detailed schemes to normalize and integrate

MMC into E-PoW. Section IV shows the performance of E-

PoW with experiments. Finally, section V concludes this paper.

II. ESSENTIALS OF E-POW

In this section, we introduce the essentials of E-PoW, which

can efficiently integrate the MMC tasks generated by AI

training into the brute-force hash search in blockchain.

A. Architecture

As shown in Fig. 1, AI training for intelligent processes in

6G systems, such as intelligent Operation, Administration and

Maintenance (OAM), networking, communicating, accessing,

and data analyzing, continuously generates massive MMC

requirements, which are injected as computing tasks into an

E-PoW based blockchain. An intermediate node, or so called

the coordinator, is responsible for dividing these tasks into

normalized sub-tasks (nsub-tasks), distributing these nsub-

tasks to the miners, integrating the results submitted by the

miners, and returning the final results to the task source in 6G

systems. During every target hash value search period, each

miner calculates the nsub-task it claims, returns the result to

the coordinator for task computing reward, and conducts the

brute-force search based on traditional PoW header, nsub-task

information, and the hash of this nsub-task’s result.

B. Coordinator

The coordinator divides and normalizes the MMC tasks into

nsub-tasks, and distributes these nsub-tasks to the miners. In

addition, it needs to verify (in a way with low overhead) and

merge the results from the miners before returning them to the

MMC task sources in the 6G system. For possible inquiries

and verifications, the coordinator also stores the information

of nsub-tasks and their results for feasible verification periods.

Specifically, an MMC task is generally the product of more

than two matrices. The coordinator first divides it into a series

of sub-tasks, each being the product of two matrices. These

sub-tasks, with different sizes and computing complexities,

are further divided into nsub-tasks, which have uniform size

and computing complexity. Identified with (task id, sub-task

id, nsub-task id), these nsub-tasks are sequentially calculated

by the miners, who will subsequently return back the results.

Then, the coordinator verifies and merges these results into the

final result for the original MMC task. A verified result can

bring corresponding reward to the miner calculating it, while

a fake result would make this miner get penalty instead of

reward for this nsub-task.

C. Miners

An E-PoW enabled miner may conduct two types of loops

to execute a brute-force search for the target hash value,

namely task-free loop and task-involved loop. In the task-

free loop, the miner does not participate in MMC tasks and

acts as a traditional PoW miner. In the task-involved loop,

the miner executes the brute-force search based not only on

the traditional PoW’s header (including the nonce), but also

on a Learning-Service-Providing (LSP) field consisting of 5

elements: task ID, sub-task ID, nsub-task ID, hash of nsub-

task, hash of nsub-task result. To keep the fairness of the

miners in generating valid blocks, a difficulty re-targeting

scheme is adopted to set feasible hash difficulties for the task-

involved loops.

In the beginning of a block time for generating a valid

block, the miner first decides the number of the nsub-tasks

it intends to complete during this block time. Then, the miner

will conduct the corresponding number of task-involved brute-

force loops, each loop including one nsub-task, with one of

the two possible cases following:

• The new valid block is successfully generated before

the task-involved loops are completed. The miner will



broadcast (or verify, when this miner is not the generator)

this block, extend the left nsub-tasks to the next block

time, and decrease the number of nsub-tasks it claims for

the next block time.

• The task-involved loops are completed while the new

valid block is not yet successfully generated. The miner

will conduct task-free loops until the new block is broad-

cast by itself or some other miner.

In each task-involved loop, the miner completes the nsub-

task of this loop it fetches from the coordinator, fills in the

LSP field based on the information and result matrix of this

nsub-task, and submits the later to the coordinator. If the result

matrix is verified, the miner will get the corresponding task

reward. Otherwise, the nsub-tasks of the miner in this block

time will be shifted to other available miners and no new nsub-

tasks will be assigned to this miner in the next block time.

The validation of the block generated in a task-involved loop

should include the LSP field, in which the task information

can be inquired from the coordinator.

D. Decentralization and Security of E-PoW

Besides the capability of connecting AI and blockchain in

6G systems, E-PoW can simultaneously keep the advantages

of PoW in aspects of both decentralization and security, which

are two major considerations in blockchain systems.

1) Decentralization: In an E-PoW based blockchain, each

miner has proportional possibility corresponding to its com-

puting power in generating a valid block, based on the follows:

• Ensured fairness. Each task-free loop has identical com-

puting complexity with any others, keeping the fairness

among them. And so do the task-involved loops in one

miner and one block time, since the nsub-task involved

in each task-involved loop also has identical computing

complexity. For the fairness between task-free loops and

task-involved loops, as well as the fairness among task-

involved loops in different miners and different block

times, a hash difficulty re-targeting scheme is proposed

and will be described in detail in Section III.C.

• Independent validation. Although an intermediate node

named coordinator is introduced for task assigning and

result fetching, the independence of new block validation

will not be influenced. From the validating nodes’ per-

spective, the data and result of one task can be identified

with the Hash scheme.

• Honest coordinator. The coordinator is honest since: 1© it

can be a server from a trustful third party; 2© although not

designed in detail, the honesty can be ensured based on a

simple surveillance scheme by the MMC task sources; 3©

the coordinator needs the system operating smoothly to

achieve more profit from the reward difference between

the MMC task sources and the miners.

2) Security: In PoW-based blockchains, 51 percent attack

is the major security threat. The schemes in E-PoW have not

decreased the decentralization of PoW, and an E-PoW based

blockchain’s tolerated power of the adversary is also no less

than 51 percent. In addition, E-PoW based blockchain is an

endogenously increasing system since its mutually beneficial

scheme can continuously enroll new positive participants pur-

suing the conveniences or the profits. The additional revenue

of completing an MMC task is deterministic and friendly to

the miners with limited computing power, which, in PoW-

based blockchains, would fall through for extremely low

revenue from block mining and thereby had more impulsion to

take adversarial behaviors. All these factors can cooperatively

increase the security of E-PoW based blockchains.

III. PROCESS OF MATRIX MULTIPLICATION CALCULATION

MMC is the underlying connection for E-PoW to integrate

the AI training into the block mining. In this section, we will

present the detailed MMC processing schemes in E-PoW.

A. Normalization of MMC Tasks

An original MMC task that calculates the multiplication of

more than 2 matrices can be divided into a series of sub-tasks

by the coordinator, each sub-task being the multiplication of 2

matrices. The first sub-task is calculating the multiplication of

the first two matrices in the original task, the second sub-task

is the multiplication of the first sub-task’s result matrix and

the third matrix in the original task, and so on. Consequently,

the last sub-task, whose result equals to that of the original

task, multiplies the result matrix of its previous sub-task by

the last matrix of the original task.

Each sub-task will be further divided into a series of nor-

malized nsub-tasks. Each nsub-task is the multiplication of two

square matrices with identical number of rows and columns

(or basic size for brevity). Consequently, the nsub-tasks have

uniform size and computing complexity. The basic size can

be determined according to the application environment. For

example, in a scenario that the numbers of rows and columns

in the sub-tasks’ matrices vary from several thousand to ten

thousand, the basic size can be set to 500. The scheme of

dividing a sub-task into nsub-tasks contains two steps: matrix

expansion and matrix partition.

1) Matrix expansion: As depicted above, each sub-task is

the multiplication of two matrices. Each matrix will be firstly

expanded in a minimum necessary extent, so that its numbers

of expanded rows and columns are both the integral multiples

of the basic size, as shown in Fig. 2. The expanded areas can be

randomly generated, as long as the following condition holds:

the multiplication of the expanded area 1 in the first matrix of

the sub-task and the expanded area 2 in the second matrix of

the sub-task is a zero matrix. In this way, the sub-task’s result

matrix is exactly the sub-matrix in the upper left corner of the

multiplication of the two expanded matrices.

2) Matrix partition: The two expanded matrices of one sub-

task, whose numbers of rows and columns are all integral

multiples of the basic size, can be partitioned without overlap

into basic square matrices with the basic size, as shown in

Fig. 2. According to the multiplication principles of matrices,

the result of the sub-task can be obtained by calculating the

corresponding multiplications of these basic square matrices.
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Fig. 2. Expansion and partition of the matrix in a sub-task.

That is to say, the sub-task can be divided into appropriate

nsub-tasks, each nsub-task calculating the multiplication of

two basic square matrices with uniform basic size, and thereby

these nsub-tasks have identical complexity and workload. By

properly merging these nsub-tasks’ result matrices, we can

easily get the result matrix of the sub-task.

B. Result Verification

The normalized nsub-tasks are continuously assigned by the

coordinator to the miners according to each miner’s initiative

on finishing MMC tasks. In order to ensure that the miners

complete the nsub-tasks honestly, a result verification scheme

is needed to check the correctness of the result matrices

submitted by the miners. The verification of the result for

a nsub-task may be conducted by the coordinator or other

miners. In some extreme environment with adversaries aiming

at destroying the AI training instead of cheating for the

reward, existing verification algorithms such as the Freivalds’

algorithm, can be adopted. Otherwise, we can use a verification

scheme with negligible computing overload as follows.

The nsub-task to be verified is calculating the multiplication

of two square matrices with basic size, and the result matrix

of this nsub-task is also a square matrix with basic size.

Randomly choose a location in the result matrix, calculate

the element value at this location based on the original square

matrices in the nsub-task, and compare this verification value

with the element in the result matrix submitted by the miner.

If the verification value doesn’t equal to the corresponding

element in the result matrix, the result matrix is wrong, and

the miner is suspected of cheating for the reward. The ran-

domness in the location choosing, and several times repeating

of the verification as needed, can ensure the accuracy of the

verification process.

C. Difficulty Re-Targeting

In an E-PoW based blockchain system, the difficulty for the

miners to generate a new block can decide the block generation

rate (BGR). It is influenced by the basic difficulty and a scale

factor, as follows.

The system adjusts the basic difficulty every time when a

given number of valid blocks have been successfully gener-

ated. This number is called the basic difficulty re-targeting

(BDRT) window. The basic difficulty in current BDRT window

is determined by three elements: the basic difficulty in the

previous BDRT window, the target BGR in the previous BDRT

window, and the actual BGR in the previous BDRT window. If

the system’s actual BGR is larger than the target BGR, which

means that the system generates blocks faster than expected,

the basic difficulty will be increased, and vice versa.

The scale factor for a miner in one block time is a value

varies from 0 to 1, and is inversely proportional to the number

of nsub-tasks the miner wants to complete in this block time.

Consequently, a miner with lower enthusiasm in completing

nsub-tasks will have a larger scale factor. When the miner

chooses not to participate in completing nsub-tasks, the scale

factor is the maximum value 1.

Then, the final difficulty for a miner to generate a new valid

block equals to the multiplication of the basic difficulty and

the scale factor. The basic difficulty is same for all the miners,

but the scale factor will change with the number of nsub-

tasks that the miners want to complete. Since the scale factor

is inversely proportional to this number, as a consequence,

the final difficulty is inversely proportional to this number,

which means that the more active the miners are involved in

completing nsub-tasks, the lower their mining difficulty will

be. Furthermore, when all the miners won’t take any nsub-

tasks, their scale factors will be 1, and the E-PoW based

system will degenerate into a traditional PoW-based system,

where all the miners have the same hash difficulty, which

equals to the basic difficulty.

IV. EXPERIMENT AND RESULTS ANALYSES

In this section, we conduct experiments to evaluate the

availability and performance of the E-PoW consensus. We

will firstly introduce the experimental environment, and then

demonstrate the experiment results and analyses in detail.

A. Experimental Environment

We build the experimental platform in a campus network. As

shown in Fig. 3, six Raspberry Pi Model 3B act as user devices

running AI training and processing, which can continuously

generate MMC tasks. A ThinkSystem SR860 server acts as the

coordinator, transforming the MMC tasks into nsub-tasks for

the miners and returning the results back to the user devices.

Five personal computers with Intel Core i5-6500 CPU @

3.20GHz, which are connected through an Ethernet switch,

play the part of five miners in an E-PoW based blockchain.

In our experiment, the square matrices are set to have 500

rows and 500 columns, and the blockchain’s initial mining

difficulty is set to 2.5 × 10
−3. According to the hardware
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of our experimental platform, it takes about 0.48 second for

the miners to execute one task-involved loop, and the target

average BGR is set to 1/300 block per second. Consequently,

the maximum number of nsub-tasks that each miner can

complete in a block time is set to 600. We run the E-PoW

consensus in five types of blockchain networks. The first four

types are Type I, II, III and IV network, composed of Type I,

II, III, IV miners, respectively. The difference among the four

kinds of miners is the initiative of completing the nsub-tasks.

For a Type I miner, in each block time it claims 0 nsub-task.

And for Type II, III and IV miners, the figures are 200, 400 and

600, respectively. The last one is Type V network, composed

of all the above four kinds of miners. The number of miners

in the blockchain network varies in a range from 2 to 5 to

show the performance changing of E-PoW when the network

scale is changing.

B. Experiment Results and Analyses

We conduct the experiment for 50 times, and show the

average results and the analyses in two aspects, namely the

time of generating a block, and the efficiency of the miners’

computing power.

1) Time of generating a block: Fig. 4 shows the time to

generate a valid block in Type I, II, III and IV network re-

spectively, where each type of network contains the maximum

number of miners. As shown in Fig. 4, the average block

generating time in each network is around 300s, which just

matches the target average BGR, and indicates that the diffi-

culty re-targeting scheme works well. In addition, comparing

Type I, II, III and IV network, the fluctuation range of the

block generating time is gradually reduced. This fluctuation

comes from the randomness of the process in finding the target

hash value of the E-PoW block header. This is because that

when the miners take more computing tasks, the blockchain

system will be more stable in the time needed to generate a

valid new block. The transaction delay can consequently be

more stable and the number of extreme long block time can

be efficiently reduced.

2) Efficiency of the miners’ computing power: Fig. 5 il-

lustrates the impact of the blockchain’s height on the miners’

contributions in computing MMC tasks. Specifically, in order
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to show the impact of the network scale, Fig. 5 provides the

trend of the miners’ contributions when the number of miners

varies from 2 to 5 in each type of network.

As shown in Fig. 5, the contributions of the miners to AI

training are evaluated in the clock periods (CPs) they devote

in computing MMC tasks. In Type II, III and IV network,

the miners’ contributions to MMC tasks increase when the

block height gets larger. That is to say, the amount of salvaged

computing power in the miners will be continuously increasing

with the operation of the blockchain. Compared with Type I

network, during the same time span, Type II, III, IV network

not only generate 50 valid blocks, but also provide MMC

services for user devices. Specifically, among the four types

of blockchain networks, Type IV network salvages the most

amount of computing power for MMC tasks, followed by

Type III network, Type II network, and Type I network in

sequence. The reason is that the types of miners in these

networks are different. The miners in Type IV network are

most active in conducting task-involved loops, which means

that they complete the most tasks in each block time. Thus,

compared with other networks, the amount of effectively

utilized computing power in Type IV network is the largest.

Therefore, the computing power of E-PoW based network can

be utilized more effectively than that of the traditional PoW-

based network. The more active the miners are involved in the

MMC tasks, the more computing power is effectively salvaged.

In each type of network, we can find the amount of the

salvaged computing power for MMC tasks also increases with

the expansion of the network scale. Take Type IV network

as an example, when the network has only 2 miners and

the block height is 50, the miners’ total computing resource

salvaged for MMC tasks is about 2 × 10
13 CPs. When the

number of miners grows to 5, the salvaged computing resource

increases to 5.5 × 10
13 CPs. Consequently, unlike traditional

PoW-based blockchains, the expansion of network scale will
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lead to more computing resource salvaged, or in another word,

less computing resource wasted.

Fig. 6 illustrates the impact of the network scale on the

efficiency of the miners’ computing power. For each network

type, although the number of miners is different, the efficiency

change of the computing power is negligible. That is to say,

the difference of the network scale has little influence on the

efficiency of the computing power in the miners. At the same

time, the efficiency of the computing power is proportional

to the initiative of the miners in completing MMC tasks.

In Type I network, which is a traditional PoW network, the

miners utilize all their computing power for target hash value

search. That is to say, besides the block mining, no computing

power is salvaged and effectively used for MMC tasks. As a

comparison, in Type II, III and IV network, the number of

nsub-tasks completed by each miner during one block time

reaches their corresponding maximum value, and the efficiency

of their computing power improves considerably by up to 80

percent compared with that in PoW-based blockchains.

V. CONCLUSION

This paper has proposed an E-PoW consensus for 6G

systems to integrate vast MMC tasks of AI training into the

block mining of blockchains, as well as the detailed schemes

transforming MMC tasks generated by AI to nsub-tasks com-

putable in the miners. Based on the elaborated schemes in the

consensus, E-PoW can keep the fairness, independence and

security of generating valid blocks while connecting AI and

blockchain in 6G systems. The extensive experiments show

that E-PoW can salvage by up to 80 percent computing power

from pure block mining for parallel AI training. For future

work, a reward adjustment scheme can be designed to adjust

the miners’ initiative of participating in the MMC tasks. To

further improve the efficiency of the AI training, schemes to

reduce the transmission delay of the tasks and results can also

be studied.
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