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7-DIMENSIONAL CLOSED SIMPLY-CONNECTED AND SPIN
MANIFOLDS HAVING 2ND INTEGRAL COHOMOLOGY
CLASSES WHOSE SQUARES ARE NOT DIVISIBLE BY 2 AND
STABLE FOLD MAPS ON THEM

NAOKI KITAZAWA

ABSTRACT. This article presents families of 7-dimensional closed and simply-
connected manifolds and fold maps on them such that squares of 2nd integral
cohomology classes may not be divisible by 2.

Fold maps are higher dimensional versions of Morse functions. The au-
thor has launched and been challenging the following new area: geometric and
constructive studies of higher dimensional, closed and simply-connected man-
ifolds. They are central objects in classical algebraic topology and differential
topology. They were classified via algebraic and abstract objects in the last
century and their understanding has been studied via concrete algebraic topo-
logical theory such as concrete bordism theory since the 2000s by Crowley,
Kreck and Wang for example.

Fold maps are fundamental objects in the new area and the author has
obtained families of these manifolds and fold maps on the manifolds. The
present paper presents a related new explicit result.

1. INTRODUCTION, TERMINOLOGIES AND NOTATION.

1.1. Smooth maps and fold maps. Fold maps are higher dimensional versions
of Morse functions and fundamental tools in the present paper and in an area which
we can regard as a higher dimensional version of the theory of Morse functions and
its applications to algebraic topology and differential topology.

A singular point of a differentiable map is a point in the domain at which the
dimension of the image of the differential is smaller than both the dimensions of
the domain and the target. The set of all the singular points the singular set of
the map. The image of the singular set is the singular value set of the map. The
regular value set of the map is the complementary set of the singular value set of
the map. A singular (regular) value means a point in the singular (resp. regular)
value set.

Throughout the present paper, manifolds, maps between them, (boundary) con-
nected sums of manifolds, and other fundamental notions are considered in the
smooth category (in the class C°°) unless otherwise stated. For a smooth map e,
S(c) denotes the singular set of c.

Definition 1. Let m > n > 1 be integers. A smooth map from an m-dimensional
smooth manifold with no boundary into an n-dimensional smooth manifold with
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no boundary is said to be a fold map if at each singular point p, it has the form
m
(xlu e 7:Em) = (xlu -1, Z(Ekz)
k=n

. . . . . . . —n+1
for suitable coordinates and a suitable integer satisfying 0 <i(p) < ===,

Proposition 1. For a fold map f in Definition 1, S(f) is an (n — 1)-dimensional
closed and smooth submanifold with no boundary, f|S(f) is an immersion and i(p)
is unique for any p € S(f).

We call i(p) the indez of p there.

Definition 2. A fold map is said to be special generic if the index i(p) is always 0
for any singular point p.

1.2. Some classes of 7-dimensional closed and simply-connected mani-
folds. R* denotes the k-dimensional Euclidean space. For a point x € R", ||z||
denotes the distance between = and the origin 0 where the underlying metric is the
standard Euclidean metric: it also denotes the value of the Euclidean norm at the
vector x € R™.

Sk .= {zx € R*1! | ||z|| = 1.} denotes the k-dimensional unit sphere and D¥ :=
{z € R¥ | ||z|| = 1.} denotes the k-dimensional unit disk. CP* denotes the k-
dimensional complex projective space, which is a k-dimensional closed and simply-
connected complex manifold.

A homotopy sphere means a smooth manifold homeomorphic to a unit disk. It is
said to be ezotic if it is not diffeomorphic to any unit sphere. If it is diffeomorphic
to a k-dimensional unit sphere, then it is a k-dimensional standard sphere.

7-dimensional closed and simply-connected manifolds are important objects in
the theory of classical algebraic topology and differential topology (of higher di-
mensional closed and simply-connected manifolds).

e There exist exactly 28 types of 7-dimensional oriented homotopy spheres.
See [18], which is a pioneering work, and see also [4] for example.

e (2], [3], and so on.) 7-dimensional closed and 2-connected manifolds are
classified via concrete algebraic topological theory.

e ([16].) The previous classification is extended to one for the class of 7-
dimensional closed and simply-connected manifolds whose 2nd integral ho-
mology groups are free.

e ([26].) There exists a one-to-one correspondence between the topologies of
7-dimensional, closed, simply-connected and spin manifolds whose integral
cohomology rings are isomorphic to that of CP? x S3 and 2nd integral
cohomology classes which are divisible by 4. A closed and oriented manifold
X having such a topology is represented as a connected sum of X and
a 7-dimensional oriented homotopy sphere . Furthermore, between two
of these manifolds, there exists an orientation-preserving diffeomorphism
if and only if between the oriented homotopy spheres appearing in the
definition, there exists an orientation-preserving diffeomorphism.

1.3. Fold maps on 7-dimensional closed and simply-connected manifolds
and a main theorem. The class of special generic maps contains Morse functions
with exactly two singular points on homotopy spheres, playing important roles in
so-called Reeb’s theorem and canonical projections of unit spheres, for example.
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Related to this and more general fundamental theory of Morse functions and de-
compositions of the manifolds into handles associated with the functions, see [19]
for example.

Proving that canonical projections of unit spheres are fold maps and special
generic is, exercises on fundamental theory of differentiable manifolds and maps
and Morse functions.

Theorem 1 ([1], [21], [22], [27] and so on.). 7-dimensional exotic homotopy spheres
admit no special generic maps into R™ for n = 4,5,6. Oriented exotic homotopy
spheres of 14 types admit no special generic maps for n = 3.

A bundle whose fiber is a (smooth) manifold is assumed to be smooth unless
otherwise stated. A smooth bundle is a bundle whose structure group is a subgroup
of the diffeomorphism group: the diffeomorphism group of a (smooth) manifold is
the group of all diffeomorphisms (of course the diffeomorphisms are assumed to be
smooth).

Theorem 2 ([8]). Ewery 7-dimensional homotopy sphere admits a fold map into
R* such that flscpy is an embedding and that f(S(f)) = {z | |[=]| = 1,2,3.}.
Furthermore, we have the following three.

(1) We can obtain this map f so that for any connected component C' C
F(S(f)), there exists a small closed tubular neighborhood N(C) so that
the composition of f|;-1(n(cy f~YUN(C)) — N(C) with the canonical
projection to C gives a trivial smooth bundle.

(2) In the previous statement, we can replace f(S(f)) ={z | ||z|| =1,2,3.} by
F(S(f) = {=| ||=|| = 1.} if and only if the homotopy sphere is diffeomor-
phic to the unit sphere.

(3) As the previous statement, we can replace f(S(f)) = {z | ||z|]| = 1,2,3.}
by f(S(f)) = {x | ||z|] = 1,2.} if and only if the homotopy sphere is
represented as the total space of a smooth bundle over S* whose fiber is
diffeomorphic to S®. There exist exactly 16 types of T-dimensional oriented
homotopy spheres satisfying this property by virtue of [4].

Theorem 3 ([14]). Every 7-dimensional manifold of [26], presented in the previous
subsection, admits a fold map into R* such that f|5(f) is an embedding and that

FS(H)) ={z|1<||z|]| € NI} for a suitable integer 3 <1 <5.
Hereafter, N denotes the set of all positive integers.

Main Theorem. Let Iy > 0 be an integer. Let {lj}é-"zl and {kj}é-“:l be sequences
of integers of length ly. Let ly’ <1y be a positive integer. Let IT;, 1, be a surjection
from the set {p € N |1 < p <ly.} onto the set {p e N|1<p<ly'.}. Then there
exist a T-dimensional closed, oriented, simply-connected and spin manifold M and
a stable fold map f: M — R* such that the following four properties hold.
(1) Ho(M;Z) = Z and Hs(M;Z) = 7k
(2) For suitable bases {aj}ép:l C H*(M;Z) =2 7" and {bj}ép:/l C HY(M;Z) =
Zl“l, the following two properties hold.
(a) The cup product of aj, and aj, always vanishes for distinct j1 and jo.
(b) The square of a; is ljbnzo,zo/(j)'

(3) The 1st Pontryagin class of M is E_lj():lkjbnlo,lo/(j).
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(4) Connected components of the singular set of f are diffeomorphic to the 3-
dimensional unit sphere. The restriction to each connected component of
the singular set of f is an embedding and the preimage of a singular value
contains at most 2 singular points. In addition, connected components of
preimages of reqular values are always diffeomorphic to S or S x S*.

Different from results on explicit fold maps into R* on 7-dimensional, closed,
simply-connected and spin manifolds in [12], [13] and [15], squares of 2nd integral
cohomology classes in Theorem 3 and Main Theorem may not be divisible by 2.
The definition of a stable fold map and a proof of Main Theorem are presented in
the next section.

2. A PROOF OF MAIN THEOREM.

For a smooth manifold X, 7T, X denotes the tangent vector space at p € X. For
a smooth map ¢: X — Y, dc, : TpX — T ()Y denotes the differential at p.

Definition 3. A fold map ¢: X — Y on a closed manifold is said to be stable if for
any y € ¢(S(c)), the following two conditions are satisfied.

(1) ¢ '(y) is a discrete set {p, }2‘:1 consisting of exactly [ > 0 points.
(2) dimY = dim(;_,dey, (T, X) + 3t (dim Y — rank dc,,).

Note that dimY" — rank dc,;, = 1 there. For example, a fold map f such that
fls(y is an embedding is stable. For this notion, for example, see also [5], which
mainly explains fundamental theory and classical important theory on singularities
of differentiable maps.

Definition 4 ([7]-[11].). Let m > n > 2 be integers. A stable fold map f: M — R"
on an m-dimensional closed manifold M into R™ is said to be round if f] s(y) Is an
embedding and for a suitable integer [ > 0 and a suitable diffeomorphism ¢ on R™,
(@0 f)S(f) ={z[1 <[zl e N< L}

This class contains canonical projections of unit spheres into the Euclidean space
whose dimension is greater than 1, stable fold maps in Theorems 2 and 3, and so
on. We can define this notion for n = 1 and this class contains Morse functions
with exactly two singular points on homotopy spheres ([11]).

A linear bundle is a smooth bundle whose fiber is diffeomorphic to a unit sphere
or a unit disk and whose structure group acts linearly on the fiber. For linear
bundles, characteristic classes such as Stiefel-Whitney classes, Euler classes (for
oriented linear bundles), Pontryagin classes, and so on, are defined as cohomology
classes of the base spaces. We can define these notions for smooth manifolds as
those of the tangent bundles. We do not review oriented linear bundles, these
characteristic classes, or so on, precisely. See [20] for example. See also [17] for
Pontryagin classes of complex projective spaces and manifolds which are homotopy
equivalent to them.

For a closed manifold, a homology class is said to be represented by a closed
(and oriented) submanifold with no boundary if it is realized as the value of the
homomorphism induced by the canonical inclusion map of the submanifold at the
fundamental class. The fundamental class of a closed (oriented) manifold is a gen-
erator of the top homology group of the manifold (compatible with the orientation)
for a coefficient commutative group: if the group is isomorphic to Z/2Z, then we
do not need to orient the manifold.
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For a compact manifold X, let ¢ be an element of the i-th homology group
H;(X;Z) such that we cannot represent as ¢ = ¢’ for any (r, ') € (Z—{0,1,-1}) x
H;(X;Z) and that rc # 0 for any r € Z — {0}. We can define ¢* € H*(X;Z) such
that ¢*(c) = 1 and that ¢*(A) = 0 for any subgroup A C H,;(X;Z) giving a
representation of H,;(X;Z) as the internal direct sum of the subgroup generated by
c and A. We can define this in a unique way and call this the dual of c.

The following proposition extends (some of) Theorem 3.

Proposition 2. Let [ be an integer. There exists a family {fix : Mix — R} ez
of round fold maps on T-dimensional oriented, closed, simply-connected and spin
manifolds satisfying the following four properties.

(1) H;(Myx;Z) =7 for j =0,2,3,4,5,7.

(2) For a suitable generator of H*(M, x; Z) = 7, the square is | times a suitable
generator of HY(M, x; Z).

(3) The 1st Pontryagin class of My, is 4k times the generator of H*(M, x;Z)
defined just before.

(4) The singular value set of each round fold map consists of exactly three
connected components and {x € R* | ||z|| = 1,2,3.}. Furthermore, the
preimages of a point in {x € R* | ||z]| < 1.}, one in {x € R* | 1 < ||z|| <
2.}, and one in {z € R* | 2 < ||z|| < 3.}, are diffeomorphic to S? x S111S3,
52 x S1 and S3, respectively.

Proof. We can prove this in a similar manner to that in the proof of Theorem 2 in
[14]. We prove this including this original case.

There exists a linear bundle M’; over S* whose fiber is diffeomorphic to 52
satisfying the following two properties.

(1) The square of a generator of the 2nd integral cohomology group of this total
space is [ times a generator of the 4-th integral cohomology group.
(2) The 1st Pontryagin class of the total space is 41 times the generator before.

For this manifold, see articles and webpages on 6-dimensional closed and simply-
connected manifolds such as [6], [25], [28] and [29] for example. If | = 0, then
the total space is diffeomorphic to S? x S* and if | = 1, then it is diffeomorphic
to the 3-dimensional complex projective space CP3. We have a smooth bundle
M'; x S* over S* whose fiber is diffeomorphic to S? x S! by the composition of
the projection of a trivial bundle over M’; with the projection of the linear bundle
before. We remove the interior of a smoothly embedded copy of a 4-dimensional
unit disk and the preimage for the resulting projection. We can exchange this to a
stable fold map such that the restriction to the singular set is an embedding, that
the singular set is diffeomorphic to S3, and that the preimages of regular values
are S3 and S? x S', respectively, for the two connected components of the regular
value set. Furthermore, we can do this so that the following three hold. Rigorous
understandings are left to readers and similar expositions are in [14] for [ = 1.

(1) If an arbitrary integer k is given, then the domain is a 7-dimensional ori-
ented, closed, simply-connected and spin manifold M;; and this satisfies
the following properties.

(a) Hi(M;x;Z) = Z for j =0,2,3,4,5,7.

(b) We take a 2nd integral homology class ¢ represented by S? x {x} C
S? x S in the preimage of a regular value before. For its dual, which
is a cohomology class in H?(M; x;Z) = Z, the square is | times a
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generator of H*(M, x;Z), which is the dual of an integral homology
class represented by a suitable closed submanifold with no boundary
and also the Poincaré dual to a homology class represented by the
preimages of regular values, which are diffeomorphic to S2 or S2 x S*.

(c) The 1st Pontryagin class of M; , is 4k times the generator of H*(M x;Z)
defined just before.

(2) For the singular value set C, there exists a small closed tubular neighbor-
hood N(C) and the composition of the restriction to the preimage of N(C)
with a canonical projection to C gives a trivial smooth bundle whose fiber is
diffeomorphic to a manifold obtained by removing the interior of a copy of
the 4-dimensional unit disc smoothly embedded in a manifold diffeomorphic
to S x Int D? C 5% x D2

(3) The index of each singular point is 2.

If | = 0, then the suitable closed submanifold in the first property here can be taken
as one diffeomorphic to the 4-dimensional unit sphere. If [ = 1, then the suitable
closed submanifold in the first property here can be taken as one diffeomorphic to
the complex projective plane CP?.

We construct a desired round fold map from this surjection. We can construct a
trivial bundle over the subset {z € R? | ||z|| < 1.} C R* whose fiber is diffeomorphic
to S3 U (S? x S1) and whose total space is the preimage of the complementary set
of Int N(C) C S* On the preimage of N(C) for the surjection, we have the
product map of a suitable Morse function on a 4-dimensional compact manifold
diffeomorphic to the fiber of the trivial bundle over C before and the identity map
on C and glue this and the previous projection in a suitable way on the boundaries.
Thus we have a desired round fold map into R*. If [ = 1, then we have a (partial)
proof of Theorem 3. O

Via fundamental arguments on deformations of Morse functions and stable fold
maps, we immediately have the following proposition.

Proposition 3. Let I be an integer. There exists a family {Fyx : My x [0,1] —
R4} ren of smooth homotopies such that for any t € [0, 1] the maps F .+ mapping x
to Fii(z,t) are fold maps on the T-dimensional oriented, closed, simply-connected
and spin manifolds satisfying the following four properties.

(1) Fiko= fik-

(2) The singular set S(Fy 1) consists of exactly three copies of the 3-dimensional
unit sphere and on each connected component it is an embedding. Further-
more, Fi;+(S(Firt)) = {x € R | ||z|| = 2,3.} U{x := (z1,22,73,74) €
R* | |lz — (3£,0,0,0)|] = 1.}.

(3) For each map F ., the preimages of a point in {x € R* | ||z|| < 2, ||z —
(3t,0,0,0)|| > 1.}, one in {z € R* | 2 < ||z]| < 3, ||z — (3¢,0,0,0)]| > 1.},
one in {x € R* | ||z|| < 2,||z — (3¢,0,0,0)|| < 1.}, and one in {x € R* |
2 < ||z|| < 3,]|lz = (2t,0,0,0)|| < 1.}, are diffeomorphic to S* x S, S3,
(52 x SYY U S3 and S3 U S3, respectively.

(4) Furthermore, in the previous situation, for the preimages diffeomorphic to
(S? x SYHY U S and S U S3, the latter S3’s for these two manifolds are
isotopic to S? in (S? x SY) U S? of a preimage for the map Fixo = fik
where suitable identifications of preimages are considered.

For this, see also FIGURE 1. For a compact manifold, a closed submanifold is
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FIGURE 1. The singular value sets of Fj o0 = fir and Fj 1 in
Proposition 3: descriptions of the manifolds represent preimages.

said to be proper if the boundary of the closed submanifold is in the boundary of
the compact manifold and the interior of the submanifold is in the interior of the
manifold. We prove the main theorem.

A proof of Main Theorem. We can easily see that Fjj i is a stable fold map. P
denotes the subset {x := (71,72, 73,74) € R* | 21 > 2.25.} of R*. We take two
copies of the restriction of this stable fold map F‘lvk11|Fz,k,1*1(R4—In‘c Py This is a
smooth map on the manifold obtained by removing the tubular neighborhood of a
submanifold diffeomorphic to S3 in M, ;. More precisely, this submanifold can be
taken as the preimage of a regular value of a round fold map in Proposition 2 by
(the property (4) in) Proposition 3. By gluing these copies, we have a stable fold
map on a new 7-dimensional oriented, closed, simply-connected and spin manifold
M. We consider the following Mayer-Vietoris sequence

— H;(0F x1 ' (R* —Int P);Z)
—— Hj(Fip1 '"(R*—Int P);Z) @ H;(Fip, "(R* —Int P);Z)
— H;(M;Z)

and we can see that H;(0F, 1~ ' (R* —Int P);Z) is zero for j # 0,3, 6, isomorphic
to Z for j = 0,6, and isomorphic to Z ® Z for j = 3. Furthermore, (9F; 1 '(R* —
Int P) is the manifold of the domain of a round fold map whose singular set consists
of two connected components and for each point in each connected component of
the regular value set of this round fold map, the preimage is empty, diffeomorphic to
53 and S3 x S3, respectively. The 6-dimensional manifold is simply-connected and
diffeomorphic to S2 x S3. For these arguments, consult Theorem 4 and Example 6
of [9] and as closely related papers [7] and [8]. We can easily see that Fj ;" (R* —
Int P) is diffeomorphic to S® x D* by the structures of the maps.

The kernel of the homomorphism from H3(0F] 1 -1 (R*—~Int P); Z) into H3 (Flkn -1 (R*—
Int P);Z) @ H3(Fi 11 *(R* — Int P);Z) is isomorphic to Z. We see this. We can
take a basis of H3(0F; ;1 '(R* —Int P);Z) so that the two elements satisfy the
following by the structures of the maps and the manifolds.
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(1) One of the two elements is represented by the preimage of a regular value
of the original round fold map in Proposition 2.

(2) The remaining element is represented by the boundary of a 4-dimensional
proper compact submanifold in Fj ., *(R* — Int P). Furthermore, the
4-dimensional compact submanifold can be taken as a manifold obtained
by removing the interior of a copy of the 4-dimensional unit disc smoothly
embedded in the 4-dimensional closed submanifold with no boundary in
(1b) in the proof of Proposition 2. In addition, we can glue 4-dimensional
closed submanifolds on the boundaries and we have a new 4-dimensional
closed submanifold S with no boundary in the resulting manifold M.

On the submodule generated by the first element, the homomorphism is a monomor-
phism. On the submodule generated by the second element, it is zero. This com-
pletes the proof on this fact on the kernel. We have H;(Fj ;1 ' (R* — Int P);Z) @
H;(Fi 1 ' (R*~Int P);Z) = H;(M;Z) for j = 2,5 easily. Furthermore, by the ar-
gument on the kernel and the structure of the homomorphism, the group Hs(M;Z)
is free and its rank is

rank (Hs(Fj 1 '(R* — Int P);Z) ® H3(Fj 1 "(R* — Int P);Z)) — 1. We can
know the integral homology group and the integral cohomology ring of M by virtue
of Poincaré duality theorem and the topological structures of the manifolds and
the maps. Furthermore, for example, Hy(M;Z) is generated by a homology class
represented by the submanifold S.

By virtue of the arguments (together with some additional properties on topo-
logical structures), we have a desired stable fold map on a desired manifold in the
case (lp,lo") = (2,1) with (I1,l2,k1,k2) = (I,1,k, k). For example, we can take
a1 and as as the duals of natural homology classes and b; as the dual of a class
represented by S before.

By considering a connected sum of the original manifolds instead, we have a
desired result in the case (lo,lo’) = (2,2) with (I1,l2,k1,k2) = (I,1,k, k). In this
case we define P’ := {z := (21,72, 73,24) € R | 21 > 2.75.} of R? instead of P
to obtain a desired map and a manifold. We can also consider original round fold
maps in Proposition 2 or 3 and take P’ instead as before to obtain a desired map
and a manifold. We have a desired stable fold map.

We can easily see that we can generalize the proofs to general cases. In fact it
is sufficient to consider suitable iterations of the presented fundamental operations
(in suitably and naturally generalized ways) for given stable maps into R%.

This completes the proof. (I
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